

Tutorial 2 has a mandatory part and then a choice of exercises. Should be a starting point for discussion of your particular projects ...

<u>Mandatory part :</u> https://Imdz.Imd.jussieu.fr/pub/Training/Tutorials/Tutorial_2.pdf explains how to setup your own experiment, create start files and boundary files, setup a zoom, ...

<u>Exercises :</u>

Choice of : 1D, nudging, aerosols, tracers, ORCHIDEE, parallel, XIOS

Setting up a simulation : prerequisits

A) Download and compile model(s) and IO libraries

A.1) Download LMDZ (+ models coupled to LMDZ) + IO libraries (IOIPSL, XIOS)

in a dedicated folder : usually *modipsl/modeles*

- A.2) Compile the IO libraries once, in the beginning
- A.3) Compile the model(s) with the options of your choice:

IO treatment, parallel/sequential mode, resolution, radiative code...) => gcm.e

B) Get/create initial and boundary files start*.nc and limit.nc for YOUR grid

(grid=resolution + zoom parameters)

- generally available for regular grids at standard resolutions,
- to be produced for non-standard grids by compiling and running ceOl.e

C) Get forcing files

some need **interpolation on YOUR grid** (Ex : aerosols, ozone…) some others don't (Ex : GHG=global means)

D) Get additional files if needed : ex. : for nudging

(and guess what ··· ?) interpolate them on YOUR grid !

Setting up a simulation : general steps

1) Create a simulation folder

(in LMDZ training they are automatically created for you : BENCH* or TUTORIAL/SIMU1)

2) Copy in it (or create links to) :

-> *.def files, executable(s), scripts for postprocessing

-> start*.nc and limit.nc for the chosen grid (resolution, zoom if any):

-> gcm.e

-> other files for forcing, nudging (for the chosen grid)...

3) Set your desired flags¶meters (other than zoom ones !) in *.def files

4) Run the model (and the post-processing scripts if needed)

For a different simulation :

- with the same gcm.e and grid (resolution, zoom) : redo Steps 1 to 4

- with different resolution/zoom parameters:

- recreate start* and limit (cf prerequisits B)
- reinterpolate all files grid-dependent (prerequisits C,D)

- <u>after code changes</u>: recompile cf (prerequisits A3) => new gcm.e

Tutorial N°2 - Mandatory Set up a simulation with (regular or) zoomed grid

Steps for setting up a simulation using "all-in-one" tutorial.tar

(see : <u>https://lmdz.lmd.jussieu.fr/pub/Training/Tutorials/Tutorial_2.pdf</u>)

<u>Prerequisite</u> : install_Imdz.sh has automatically

- downloaded and compiled model(s)&libraries,
- run a 1st simulation in modipsl/models/LMDZ/BENCH32x32x39

Here : tutorial.tar via its main script init.sh allows you to automatically :

- recompile LMDZ for a different resolution
- create initial and boundary files (start* and limit) for a chosen grid (NOTE : grid = resolution+zoom factor)
- set up simulation folders : SIMU1 (multi-day runs), PROD0 (multi-month runs) with all you need (*.def files, start* and limit.nc files, gcm.e)

<u>You'll "only" have to :</u>

- a) Download and unpack tutorial.tar in modeles/LMDZ => folder TUTORIAL
- b) Check/modify *.def files in TUTORIAL/DEF/ (zoom parameters are in gcm.def)
- c) Check/modify init.sh script : grid_resolution, veget, parallel
- d) run : ./init.sh (NOTE : pay attention at its final instructions about how to run the model)
- e) check the results of ./init.sh :
 - TUTORIAL/INITIAL : grille.pdf, start.nc, startphy.nc and limit.nc
 - TUTORIAL/SIMU1 : check *def files and links to gcm.e and start+limit.nc files And finally :
- f) run the model and visualize the results

Proposed exercises :

Nudging

1D

Parallelism

XIOS

Coupling with surface schemes (bucket, Orchidee) Aerosols

Tracers

Download your choice(s) from : <u>https://lmdz.lmd.jussieu.fr/pub/Training/Tutorials</u>