### Développement d'un modèle simplifié d'effet de serre et de climat

Stage effectué au Laboratoire de Météorologie Dynamique (LMD) sous la direction de Jean-Louis Dufresne 5 mai 2020 - 27 juillet 2020





### *Soutenance de stage* : <mark>de serre et de climat</mark>



### Introduction





Partie 1 Calcul des spectres d'émission quittant l'atmosphère terrestre





Partie 2 Bilan radiatif terrestre





### Sommaire

Loi de Planck et loi de Stefan-Boltzmann Hypothèses du modèle Flux radiatif dirigé vers l'espace Atmosphère composée de CO<sub>2</sub> Coefficient d'atténuation Résolution Atmosphère composée de vapeur d'eau Différences Résolution Atmosphère composée du mélange des deux gaz Flux radiatif dirigé vers la surface

| école ———      |
|----------------|
| normale        |
| supérieure ——— |
| paris-saclay   |



© NASA

### Loi de Planck et loi de Stefan-Boltzmann

La loi de Planck s'écrit :  $B(\nu, T) = 2\pi h\nu^3 c^2 \frac{1}{e^{\frac{ch\nu}{k_B T}} - 1}$  avec



écolenormalesupérieureparis-saclay

$$\begin{cases} h = 6,626 \times 10^{-34} \text{ m}^2 \text{ kg} \text{ s}^{-1} \\ c = 3 \times 10^8 \text{ m} \text{ s}^{-1} \\ k_{\text{B}} = 1,38 \times 10^{-23} \text{ m}^2 \text{ kg} \text{ s}^{-2} \text{ K}^{-1} \end{cases}$$

Où  $\nu$  est le nombre d'onde, une grandeur inversement proportionnelle à la longueur d'onde.

$$\nu = \frac{1}{\lambda}$$

L'intégrale de la loi de Planck (en  $W \cdot m^{-2}$ ) se calcule d'après la loi de Stefan-Boltzmann.

$$L = \sigma_{\rm SB} T^4$$

2500



### Hypothèses du modèle

Moyenne spatiale :  $z \in [0, Z_T]$ Avec  $Z_T = 12,5 \text{ km}$ 

Moyenne temporelle

Évolution de la pression :  $p(z) = p_0 \ e^{-z/h_r}$ 







### Évolution linéaire de la température :

$$T(z) = T_{as} + \alpha \times z$$

Avec 
$$\begin{cases} T_{as} = 294 \text{ K} \\ \alpha = -6,532 \text{ K} \cdot \text{km}^{-1} \end{cases}$$



# Flux radiatif dirigé vers l'espace (†)



Simple model to estimate the contribution of atmospheric CO<sub>2</sub> to the earth's greenhouse effect - Derek Wilson



Équation de transfert radiatif « vers le haut » :

$$\frac{\mathrm{d}I_{\nu}^{(\uparrow)}}{\mathrm{d}z} = -\alpha_{\nu}(z) \left( I_{\nu}^{(\uparrow)}(z) - B(\nu, T(z)) \right)$$

Cette section est décomposée en 3 parties :

Atmosphère uniquement composée de dioxyde de carbone
Atmosphère uniquement composée de vapeur d'eau
Atmosphère composée du mélange des deux gaz

## Coefficient d'atténuation $\alpha_{\nu}$

Expression du coefficient d'atténuation :

Nombre de molécule par mètre cube :  $n_{CO_2}(z) = n_{0,CO_2} e^{-z/h_r}$ 

Avec 
$$n_{0,CO_2} = X_{CO_2} \times 10^{-6} \frac{p_0 \mathcal{N}_a}{RT_0}$$
  
Et 
$$\begin{cases} p_0 = 1 \times 10^5 \text{ Pa} \\ T_0 = 298,15 \text{ K} \\ \mathcal{N}_a = 6,022 \times 10^{23} \text{ mol}^{-1} \\ R = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \end{cases}$$

Prise en compte de l'élargissement par collision :

$$\tau(\nu) = \int_0^{Z_T} \sigma(\nu) \frac{p(z)}{p_0} n(z) dz \rightarrow n_{\text{CO}_2} = n_{0,\text{CO}_2} e^{-z/h_c}$$

$$\text{Avec} \quad h_c = \frac{h_r}{2}$$

écolenormalesupérieure — paris — saclay

$$\alpha_{\nu}(z) = \sigma_{\text{CO}_2}(\nu) \ n_{\text{CO}_2}(z)$$





### Résolution de l'équation de transfert radiatif

$$\frac{\mathrm{d}I_{\nu}^{(\uparrow)}}{\mathrm{d}z} = -\alpha_{\nu}(z) \left( I_{\nu}^{(\uparrow)}(z) - B(\nu, T(z)) \right)$$

Après résolution :

$$I_{\nu}^{(\uparrow)}(Z_T) = I_{\text{surface}} + I_{\text{atmosphere}}^{(\uparrow)}$$

Avec 
$$\begin{cases} I_{\text{surface}} = B(\nu, T_s) \ e^{-N_{\text{CO}_2}(1 - e^{-Z_T/h_c})} \\ I_{\text{atmosphere}}^{(\uparrow)} = \int_0^{Z_T} \left( \frac{N_{\text{CO}_2}}{h_c} \ e^{-z/h_r} \ B(\nu, T(z)) \ e^{N_{\text{CO}_2}(e^{-Z_T/h_c} - e^{z/h_c})} \right) dz \\ \text{Et} \quad N_{\text{CO}_2} = \sigma_{\text{CO}_2}(\nu) \ n_{0,\text{CO}_2} \ h_c \end{cases}$$





La précision est très correcte, avec un écart relatif de 0,62~% .

### Calcul dans le cas de la vapeur d'eau

Trois points diffèrent par rapport au cas précédent.

Évolution de la concentration molaire :  $x_{\rm H_2O}(z) = x_{0,\rm REF} f e^{-z/h_e}$ 

Modélisation de la section efficace : (régression polynomiale de la référence)

Avec  $\begin{cases} x_{0,\text{REF}} = 0.028 \\ h_e = 1.99 \text{ km} \end{cases}$ 







Prise en compte du continuum :

$$\frac{\tau_{\rm H_2O,REF}(\tau)}{h_{0,\rm H_2O} h_e \left(1 - e^{-Z_T/h_r}\right)}$$

$$\sigma_{\mathrm{H}_{2}\mathrm{O},\mathrm{CYES}}(\nu) = \sigma_{\mathrm{H}_{2}\mathrm{O},\mathrm{CNO}}(\nu) + \beta(\nu) \times f$$





# Résolution de l'équation de transfert radiatif

L'équation de transfert radiatif ainsi que sa résolution sont identiques au cas de l'atmosphère uniquement composé de  $\mathrm{CO}_2$ .



école normale supérieure paris-saclay En plus des trois changements évoqués,  $h_c$  est remplacé par  $h_x$ :  $h_r h_e$ 

$$h_x = \frac{h_r h_e}{h_r + 2h_e}$$

À nouveau, la précision est très correcte, avec un écart relatif de 0,79%.



### Résolution dans le cas du mélange des deux gaz

$$\frac{\mathrm{d}I_{\nu}^{(\uparrow)}}{\mathrm{d}z} = -\alpha_{\nu}(z) \left( I_{\nu}^{(\uparrow)}(z) - B(\nu, T(z)) \right)$$
  
Avec  $\alpha_{\nu}(z) = \sigma_{\mathrm{CO}_{2}}(\nu) n_{\mathrm{CO}_{2}}(z) + \sigma_{\mathrm{H}_{2}\mathrm{O}}(\nu) n_{\mathrm{H}_{2}\mathrm{O}}(z)$ 

Après résolution :

$$I_{\nu}^{(\uparrow)}(Z_T) = I_{\text{surface}} + I_{\text{atmosphere}}^{(\uparrow)}$$

### Avec

$$\begin{cases} I_{\text{surface}} = B(\nu, T_s) \ e^{-N_{\text{CO}_2}(1 - e^{-Z_T/h_c}) - N_{\text{H}_2\text{O}}(1 - e^{-Z_T/h_x})} \\ I_{\text{atmosphere}}^{(\uparrow)} = \int_0^{Z_T} \left( \alpha_{\nu}(z) \ B(\nu, T(z)) \ e^{N_{\text{CO}_2}(e^{-Z_T/h_c} - e^{z/h_c}) + N_{\text{H}_2\text{O}}(e^{-Z_T/h_x} - e^{z/h_x})} \right) dz \end{cases}$$

Et 
$$\begin{cases} N_{\text{CO}_2} = \sigma_{\text{CO}_2}(\nu) \ n_{0,\text{CO}_2} \ h_c \\ N_{\text{H}_2\text{O}} = \sigma_{\text{H}_2\text{O}}(\nu) \ n_{0,\text{H}_2\text{O}} \ h_x \end{cases}$$





Cette fois-ci, l'écart relatif est de 0,43 %.

### Flux radiatif dirigé vers la surface $(\downarrow)$

Équation de transfert radiatif « vers le bas » :

$$\frac{\mathrm{d}I_{\nu}^{(\downarrow)}}{\mathrm{d}z} = -\alpha_{\nu}(z) \left( I_{\nu}^{(\downarrow)}(z) - B(\nu, T(z)) \right)$$

Après résolution :

$$I_{\nu}^{(\downarrow)}(0) = \int_{0}^{Z_{T}} \left( \alpha_{\nu}(z) B(\nu, T(z)) \ e^{N_{\text{CO}_{2}}(e^{-z/h_{c}-1}) + N_{\text{H}_{2}\text{O}}(e^{-z/h_{x}-1})} \right) \mathrm{d}z$$





Pour le flux arrivant à la surface, l'écart relatif est de 0,25%.







### Sommaire

Flux et bilans Définition des variables d'état Rétroactions climatiques Rétroaction sur l'albédo Rétroaction sur le gradient thermique Rétroaction sur la concentration en vapeur d'eau Évolution de la température à la surface de la Terre État d'équilibre Exemples de deux scénarios Doublement instantané de  $X_{\rm CO_2}$ Augmentation progressive de  $X_{\rm CO_2}$ 

| école          |
|----------------|
| normale        |
| supérieure ——— |
| paris-saclay   |



### Flux et bilans



Schéma simplifié des différents flux radiatifs considérés.

![](_page_13_Picture_3.jpeg)

Expression du flux solaire absorbé par la surface :

$$F_{\text{surface}}^{\text{SW}} = F_i \,\mathcal{T}_{\text{SW}} \,(1-a)$$

Avec 
$$\mathcal{T}_{SW} = e^{-\tau_{SW}}$$
 et  $\tau_{SW} = \sqrt{4 \times \frac{M_{H_2O} n_{0,H_2O} h_e}{\mathcal{N}_a} \left(1 - e^{-Z_T/h_e}\right)}$ 

Expression du flux solaire absorbé par l'atmosphère :

$$F_{\text{atmosphere}}^{\text{SW}} = F_i \,\mathscr{A}_{\text{SW}} \,(1 + \mathcal{T}_{\text{SW}} \,a)$$

Avec  $\mathscr{A}_{SW} = 1 - \mathscr{T}_{SW}$ 

![](_page_13_Picture_10.jpeg)

## Définitions des variables d'état

On utilise différentes variables d'état.

Température de surface et de bas d'atmosphère :

Pour la suite, on fixe  $T_s = T_{as}$ .

Et  $T_s^{(k+1)} = T_s^{(k)} + \delta T$  avec  $\delta T = \frac{B_{\text{surface}} + B_{\text{atmopshere}}}{C_{\text{surface}} + C_{\text{atmopshere}}} \delta t$ 

Gradient thermique vertical :

$$\Gamma(z) = \frac{dT(z)}{dz}$$
  
D'où  $T(z) = T_{as} + \int_0^z \Gamma(u) du$ 

école normale supérieure paris-saclay Paramètres de concentration en vapeur d'eau :  $\rightarrow f$  $\rightarrow h_e$ 

Obtenus à partir de  $n_{\rm H_2O}(z)$ 

Albédo terrestre :

Fraction du flux solaire réfléchie par la surface de la Terre, on le note a.

![](_page_14_Picture_12.jpeg)

## Rétroactions climatiques

Phénomène par lequel un effet sur le climat induit un autre effet sur la cause de ce premier.

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_4.jpeg)

## Rétroaction sur l'albédo

L'augmentation des températures induit la fonte des glaces et de la neige.

Modélisation de  $a(T_s)$ :

$$a(T_s) = \min\left(a_{\max}, \max\left(a_{\min}, p \times T_s + q\right)\right)$$

Avec 
$$\begin{cases} a_{\min} = 0.07 \\ a_{\max} = 0.6 \\ p = -3.1736 \times 10^{-3} \text{ K}^{-1} \\ q = 1.1808 \end{cases}$$

école normale supérieure paris—saclay——

![](_page_16_Figure_6.jpeg)

![](_page_16_Picture_7.jpeg)

### Rétroaction sur le gradient thermique vertical

Modélisation de  $\Gamma(z)$ :

$$\Gamma(z) = -g \frac{R_{sd}T^2 + H_v rT}{c_{pd}R_{sd}T^2 + h_v r\varepsilon} \times 10^3$$

$$Avec \begin{cases} R_{sd} = 287 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1} \\ R_{sw} = 461,5 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1} \\ H_{v} = 2 501 000 \text{ J} \cdot \text{kg}^{-1} \\ c_{pd} = 1003,5 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1} \\ r = \text{HR} r_{sat} \\ \varepsilon = \frac{R_{sd}}{R_{sw}} = 0,622 \end{cases}$$

(Constante spécifique de l'air sec) (Constante spécifique de la vapeur) (Chaleur lantente de vaporisation) (Chaleur spécifique de l'air sec) (Rapport de mélange)

Et 
$$r_{sat}(z,T) = \varepsilon \frac{\exp\left(13,7 + \frac{5120}{T}\right)}{e^{-z/h_r} - \exp\left(13,7 + \frac{5120}{T}\right)}$$

écolenormalesupérieure — paris — saclay — —

18

![](_page_17_Figure_9.jpeg)

![](_page_17_Picture_10.jpeg)

### Rétroaction sur la concentration en vapeur d'eau

Modélisation de  $n_{H_2O}(z, T)$ :

$$n_{\rm H_2O}(z,T) = \frac{\varepsilon \ {\rm HR}}{M_{\rm H_2O}} \mathcal{N}_a \times \frac{\exp\left(13,7 + \frac{5120}{T}\right)}{e^{-z/h_r} - \exp\left(13,7 + \frac{5120}{T}\right)} \rho_{0,as} \ e^{-z/h_r}$$

$$\begin{array}{l} {\rm Avec} & \left\{ \begin{matrix} M_{\rm H_2O} = 18 \times 10^{-3} \ {\rm kg} \ . \ {\rm mol}^{-1} & \mbox{(Masse molaire de l'eau)} \\ & \mathcal{N}_a = 6,022 \times 10^{23} \ {\rm mol}^{-1} & \mbox{(Constante d'Avogadro)} \\ & \rho_{0,as} = 1,2 \ {\rm kg} \ . \ {\rm m}^{-3} & \mbox{(Masse volumique de l'air sec)} \end{matrix} \right. \end{array} \right.$$

école—\_\_\_\_\_ normale—\_\_\_\_\_ supérieure—\_\_\_\_\_ paris—saclay—\_\_\_

![](_page_18_Figure_6.jpeg)

![](_page_18_Picture_7.jpeg)

# Évolution de $T_s$ jusqu'à l'équilibre

Évolution de  $T_s$  sans rétroactions climatiques

![](_page_19_Figure_2.jpeg)

écolenormalesupérieure —— paris — saclay ——

![](_page_19_Figure_7.jpeg)

![](_page_19_Picture_8.jpeg)

## Premier scénario climatique

Doublement instantané de la concentration en  $CO_2$  :

![](_page_20_Figure_3.jpeg)

écolenormalesupérieure – paris-saclay-

### $X_{\rm CO_2}(t > t^*) = 2 \times X_{\rm CO_2}(t = 0)$

![](_page_20_Picture_8.jpeg)

## Second scénario climatique

Augmentation de la concentration en CO

Évolution de  $T_s$  sans rétroactions climatiques

![](_page_21_Figure_3.jpeg)

écolenormalesupérieure —— paris — saclay ——

$$D_2$$
 de 1% par an :  $X_{CO_2}(t) = X_{CO_2}(t^*) \times 1,01^{(t-t^*)}$ 

### Évolution de $T_s$ avec rétroactions climatiques

![](_page_21_Picture_8.jpeg)

### Conclusion

### Programmes au format Jupyter Notebook.

![](_page_22_Picture_2.jpeg)

https://nc.ens-paris-saclay.fr/s/96awR75A3KyTRtd

| éco  | le          |
|------|-------------|
| ηοι  | nale ———    |
| sup  | érieure ——— |
| рагі | s-saclay —— |

![](_page_22_Picture_5.jpeg)

### Bibliographie

- (1)
- (2) Journal of Climate, 33, 2020.
- (3)
- (4) American Journal of Physics, 80, 2012.
- (5) *Meteorology*, 20, 1981.
- (6) Research, 96, 1991.
- Raymond Pierrehumbert. Principles of planetary climate. 2009. (7)
- (8)
- (9) Al Gore. An inconvenient truth. 2006.
- (10) American Meteorological Society. Saturation adiabatic lapse rate. *Glossary*, 2012.

| école——       |  |
|---------------|--|
| normale ——    |  |
| supérieure —  |  |
| paris-saclay. |  |

Jean-Louis Dufresne. L'effet de serre atmosphérique : plus subtil qu'on ne le croit ! La Météorologie, 72, 2011. Jean-Louis Dufresne. Greenhouse effect : The relative contributions of emission height and total absorption.

R.A. McClatchey. Optical properties of the atmosphere. *Environmental Research Papers*, 354, 1971. Derek Wilson. Simple model to estimate the contribution of atmospheric CO<sub>2</sub> to the earth's greenhouse effect.

N.A. Scott. A fast line-by-line method for atmospheric absorption computations. Journal of Applied

Andrew Lacis. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. Journal of Geophysical

Keith Shine. The water vapour continuum : Brief history and recent developments. Springer Science, 2012.

![](_page_23_Picture_19.jpeg)