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7) Troposheric equatorial variability   
a) Mean and variabilities of the Outgoing Longwave Radiation 
observed by satellites

Level 0 statistics: variance teleconnections and EOFs

b)The inter-annual El-nino or southern “oscilllation”
Level 1 statistics: PCs spectra and co-spectra, composites

 
c) The intraseasonnal or Madden Julian “oscilllation”

d) The convectively coupled equatorial waves
Level 1 statistics: time-longitude spectra, and composites

e) Equatorial waves theory
Toy model 4 : shallow water theory adapted to vertically propagating 
Equatorial waves
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a) Mean and variabilities of the observed outgoing longwave radiation (OLR) 
Level 0 statistics: variance teleconnections and EOFs

Satellite NOAA14-17

The outgoing longwaves are primarily coming from the highest optical obstacle, and measure
The black body T° at the top of the obstacle.  For instance if there are thick high level clouds
The OLR will be low because at high altitude the T° is low.
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In summer, the mean minimal values are over
the monsoon regions, where the precipitations
are the largest, the  highest values
over the desertic lands.

In summer, the variabilities are also
the largest where the mean precipitations
are the largest.  Note the maxima in variability
over the bay of Bengal (Indian monsoon)
and the South Eastern Asia (Asian monsoon)

a) Mean and variabilities of the observed outgoing longwave radiation (OLR) 
Level 0 statistics: variance teleconnections and EOFs
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Precipitations and OLR give very comparable informations

Precipitations (mm/day) GPCP (1997-2008)OLR NOAA (1979-2008)

In (NH) winter the monsoon regions are now over southern America and South Equatorial Africa, but the
Largest mean convection occurs over the oceanic Indonesian continent. Over this large sector, essentially 

located over the ocean and centered at the equator, the variabilty is also extremely large. Air sea interactions
certainly play a central role in this variability

a) Mean and variabilities of the observed outgoing longwave radiation (OLR) 
Level 0 statistics: variance teleconnections and EOFs
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To focus attention on the Equatorial variability,
we average the OLR over the Eq band (10°S-10°N)

and calculate its variance 
(after substraction of the

Annual cycle and using 3-day mean data).

 We find again the a broad maxima of variancelargely
Covering the maritime continent and the western 

Pacific.

The maxima of anticorrelation shows that the
maritime continent and the central Pacific are in phase

opposition.

The first 2 EOFS have center of actions well
Located in the broad maxima of variance identified

Before. They represent around 35 % of the variance
(datas every 3 days.

The first EOF seems to capture the
Anticorrelation between the maritime continent and

The central Pacific

a) Mean and variabilities of the observed outgoing longwave radiation (OLR) 
Level 0 statistics: variance teleconnections and EOFs
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Spectral analysis of the PCs 1 and 2.

The PC1 shows enhanced variabilities in the 
inter-annual band (w-1>1yr not the PC2)

The PC1 and 2 show enhanced variabilities
in the intra-seasonnal band (100day>w-1>10days)

In the intra-seasonnal band the PC1 and 2 are 
significantly correlated, and in lead-lag quadrature

The interannual and intra-seasonal signals
are extracted using non-recursive filters which
Transfer function are shown in solid red

4y
rs
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r

b) The inter-annual El-nino or southern “oscilllation”
Level 1 statistics: PCs spectra and co-spectra, composites
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The low pass filtered PC1 (black) is a
 smoothed version of the raw one.

It presents large peaks, that matches 
the peacks of the ENSO Index

Given by the averaged Sea surface
 Temperature over central and

 Eastern Pacific  

b) The inter-annual El-nino or southern “oscilllation”
Level 1 statistics: PCs spectra and co-spectra, composites
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At the Equator, the winds blow from high to
low pressure (the Coriolis force is small)
Durin El-nino, the shift in precipitations

toward the central pacific correspond to 
a reduction of the trade winds between 

Darwin and Tahiti.

This pressure difference is measured until
the end of the 19th century and
validate over the satellite period

If the interannual variability has some form of oscillatory components, there is some hope
that we can predict its evolution a long time in advance and using statistical tools
But the modern series are two short (like our OLR data here) so we use proxy, 
like here the pressure difference betwwen Tahiti and Darwin

b) The inter-annual El-nino or southern “oscilllation”
Level 1 statistics: PCs spectra and co-spectra, composites
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Issues de http://www.pmel.noa.gov/tao/elnino

Normal situations:
The convection is centerd 
over the Pacific warm Pool

The warm pool is itself 
feede by the trade winds

El-Nino situation
The warm pool shifts 

toward the central Pacific, 
The trade winds reduced 
and are less efficient in 

“pushing” the warm water 
towrd the western Pacific

(a example of positive 
feedback)

La Nina situation:
The warm pool is even 
more confined to the 
western Pacific and 
maritime continent.

b) The inter-annual El-nino or southern “oscilllation”
Level 1 statistics: PCs spectra and co-spectra, composites
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OLR composites keyed
to the low pass PC1 illustrates

Well that during ENSO the 
mean precipitations are

considerably reduced over the western
Pacific and maritime continent and
Increasd  over the central Pacific
(here averages over winter, DJF)

b) The inter-annual El-nino or southern “oscilllation”
Level 1 statistics: PCs spectra and co-spectra, composites
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Evidence that there exists inter-annual oscillations of the ENSO Index

The ENSO index behaves almost like a 
red-noise

Nevertheless, it presents weakly significant
peaks at 2 and 4 years.

The reduced amplitude of this peaks
make that purely statistical predictions

are not much reliable.

But the inter-annual variability is large, so
we still need to understand what produces

 it.

May be the term oscillation is usurpated
(or old fashion!)

b) The inter-annual El-nino or southern “oscilllation”
Level 1 statistics: PCs spectra and co-spectra, composites
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Climatic Impacts

b) The inter-annual El-nino or southern “oscilllation”
Level 1 statistics: PCs spectra and co-spectra, composites
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c) The intraseasonnal or Madden Julian “oscilllation”

Composites keyed to the PC1 and 2 of OLR filtered
In the intraseasonnal band

Note the slow eastward displacement of the large
scale precipitation pattern that is over the Indian ocean 
toward the western Pacific

Although the composite identify phases in the oscillation
the characteristic duration can be well above a month
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19/01 21/01 23/01

c) The intraseasonnal or Madden Julian “oscilllation”
One real case to illustrate the distinction between planetary scale variability and day

to day weather variability (visible meteosat data, Jan-Feb 1999). 

25/01

27/01 Tropical
storm

31/01
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27/01

c) The intraseasonnal or Madden Julian “oscilllation”
The planetary scale variability modulate the onset of synoptic weather events, here

a tropical storm that can well propagate westward (some become hurricanes)
Hereagain low-frequency varibilty and synoptic weather should well be distinguished

Tropical
storm
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Time-frequency spectra of OLR averaged over the equatorial band 

The relative maxima obtained falled between
 the dispersion curves of the equatorial waves

with equivalent depths :

h=  5m, 12m, 25m, 50m and 90mKiladis et al.~(2009)

Symetric and asymmetric signal

T s=
1
10∫0

10
(T (ϕ)+T (−ϕ))d ϕ , T a=

1
10∫0

10
(T (ϕ)−T (−ϕ))d ϕ

Fourier series:

T s (t ,λ)=∑s=1

nlo
2 ∑i=1

N
T̂ s (s ,ωi)e

i ( sλ−2πω it )

Periodogram:

PT s
(s ,ω)=T̂ s T̂ s

∗
(s ,ω)

Very noisy : Spectra are better approximated by smoothed
    periodograms:

ST s
≈
~PT s

d) The convectively coupled equatorial waves
Level 1 statistics: time-longitude spectra and composites
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The dispersion curves shown correspond to the Kelvin waves (n=-1), Rossby Gravity waves 
(n=0), Rossby waves (with n=1),   ect.

Derived from the shallow-water theory of Equatorial waves (Matsuno 1966), but with 
equivalent depth of 8m, 25m, 25m, 50m, and 90m!

522411B8

d) The convectively coupled equatorial waves
Level 1 statistics: time-longitude spectra and composites
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Reconstruction of the signal after filtering all datas (here Brilliance Temperature,
Geopotential (contour) and horizontal winds near the ground (850hPa, arrows)) 

Day 0

Day 2

The reconstruction is done via correlations with the filtered Brilliance Temperature
At 7.5°N, 172°E

Here the band pass Kelvin
wave filter is used

Kiladis et al.~(2009)

d) The convectively coupled equatorial waves
Level 1 statistics: time-longitude spectra and composites
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Kiladis et al.~(2009)

Day 0

Day 2

The reconstruction is done via correlations with the filtered Brilliance Temperature
At 7.5°N, 172°E

Here the band pass Rossby-gravity
wave filter is used

d) The convectively coupled equatorial waves
Level 1 statistics: time-longitude spectra and composites
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Equatorial  Boussinesq
b plane approximation
(otherwise as in Lecture 5):

e) Equatorial waves theory
Toy model 4 : shallow water theory adapted to vertically 
propagating Equatorial waves

Dv
Dt

+β yu=−∂Φ

∂ y
∂Φ
∂ z

=b

∂u
∂ x

+
∂ v
∂ y

+
∂w
∂ z

=0

b=g θ
θs

, Φ=
p
ρ s

Db
Dt

=0

N2
=

db0

dz

Du
Dt

−β y v=−∂Φ

∂ x

Stratification at rest, b0(z), F
0
(z)

Resulting equations :

Du
Dt

−β y v=−
∂Φe

∂ x
Dv
Dt

+β y v=−
∂Φe

∂ y
∂Φe

∂ z
=be

∂u
∂ x

+
∂ v
∂ y

+
∂w
∂ z

=0

D be

Dt
+N ²w=0

Hydrostatic

Coriolis term: 2Ω sin ϕ≈β y

β=
2Ω
a

Sphericity terms:

tan ϕ
uv
a

 and tan ϕ
uu
a

neglected



21

∂t u '−β y v '+∂ xΦ '=0

∂t v '+β yu '+∂ yΦ '=0

∂xu '+∂ y v '+∂z w'=0

∂t∂ zΦ '+N 2
(z )w '=0

Linearised equations, no background zonal
winds, stratification at rest stays given by q0(z)

e) Equatorial waves theory
Toy model 4 : shallow water theory adapted to vertically 
propagating Equatorial waves

Separation of constants : 
u’, v’ and F’ have the same vertical
 structure (say U(z)) and call W(z)
 the vertical structure of w’ :

(
u '
v '
Φ ' )=U (z)(

~u (t , x , y )
~v (t , x , y )
Φ(t , x , y ))

w '=W (z )~w '(t , x , y )

U (z )(∂t
~u−β y~v +∂x

~
Φ )=0

U (z )(∂t
~v +β y~u +∂ y

~
Φ )=0

U (z ) (∂x
~u +∂ y

~v )+W z (z)~w=0

U z( z)∂t
~
Φ+W ( z)N2

(z )~w=0
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e) Equatorial waves theory
Toy model 4 : shallow water theory adapted to vertically 
propagating Equatorial waves

∂t
~u−β y~v +∂x

~
Φ=0

∂t
~v +β y~u +∂ y

~Φ=0

∂t
~
Φ+gh (∂x

~u +∂ y
~v )=0

Vertical structure equation :

Shallow water equations 
(h=equivalent depth)

d2W
dz2 +

N2(z )
gh

W=0

(
~u
~v
~
Φ
)=(

û ( y )
v̂ ( y )
Φ̂ ( y ))e

i (kx−wt )

Case when N²=cte :

W=W 0 e
imz where m2

=
N2

gh

Monochromatic (time longitude) wave :

− iω û−β y v̂+i k Φ̂=0

−iω v̂+β y û+∂ y Φ̂=0

−iωΦ̂+gh (i k û+∂ y v̂ )=0

For 2
π
m
=10km , N 2

=10−4 s−2 , h≈25m

Tropospheric application : e imz→cosmz (horizontal wind )or sin mz(vertical wind)
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v=0 =−1

∂ y ϕ̂+β
k
ω

y Φ̂=0

ω2
−ghk 2

=0

Frequency and phase speed (shallow water):

ω=+√ ghk , or C x=
ω
k
=√ gh=c

Meridional structure:

Φ̂=Φ̂0 e
−
β
c

y2

2 , û=
Φ̂
√ gh

Kelvin waves

−iω û+i k Φ̂=0

β y û+∂ yΦ̂=0

−ωΦ̂+ghk û=0

m2
=

N 2

gh
→ ω

2
=

N 2 k2

m2

Dispersion relation

e) Equatorial waves theory
Toy model 4 : shallow water theory adapted to vertically 
propagating Equatorial waves
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Number of nodes between the poles n>-1 (for the meridional velocity v) 
All the equations can be combined to give an equation for the meridional velocity:

We search solutions of the form:

v̂=e
−
β
c

y2

2 V ((βc )
1/2

y )
Equation for V (x ) , x=(βc )

1/2

y

d2V
dx2 −2x

dV
dx

+(ω
2

cβ
−

k 2c
β

−
kc
ω

−1)V=0

∂ y
2 v̂+(ω

2

c2 −k2
−
βk
ω

−
β2 y 2

c2 ) v̂=0

The Hermite polynomials
Differential equation:

Few examples

They form an orthonormal basis for the scalar 
product:

Hν ' '−2x Hν '+2νHν=0

H 0=1, H 1=2x , H 2=4x2−2, ....

〈 f , g 〉=∫−∞

+∞

f (x )g (x )e−x2
/2dx

Remember Shrodinger (1923)'s 
equation for the harmonic oscillator

ℏ
2

2m
ψxx+(E− k x2

2 )ψ=0

Dispersion relation when n is given :

ω2

c2 −k 2
−

kβ
ω

= (2ν+1 )
β
c

c=√gh

e) Equatorial waves theory
Toy model 4 : shallow water theory adapted to vertically 
propagating Equatorial waves
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Eastward or westward propagation, the most 
frequent ones goes westward (in terms of 
phase speed)

All goes eastward in term of group speed

 

Number of nodes between the poles n=0: Rossby gravity waves 

Dispersion relation:
ω2

c2 −k2
−

kβ
ω

=
β
c

Factorizes into:

(ωc +k )(
ω
c
−k−

β
ω )=0

ω
c
+k=0 impossible (see Kelvin waves)

Shallow water intrinsic frequency:

ω=
kc±√k 2c2

+4β c
2

The dispersion relation can be derived using

m2
=

N 2

gh

c=√gh

e) Equatorial waves theory
Toy model 4 : shallow water theory adapted to vertically 
propagating Equatorial waves
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n=1

Example of a Rossby 
wave 

westward propagation

The dispersion relation is a third order equation in w:
Number of nodes between the poles n>0: Rossby and gravity waves 

3 solutions are possible, one westward 
propagating Rossby wave (w/k<0) 

and two gravity waves (eastward or westward)

ω2

c2 −k 2
−

kβ
ω

= (2ν+1 )
β
c

e) Equatorial waves theory
Toy model 4 : shallow water theory adapted to vertically 
propagating Equatorial waves
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