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Evaluation of the interplay between deep convective parameterization and large-scale
condensation using measurements of water isotopic composition profiles
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Introduction
A major purpose of a deep convective parameterization in a GCM is to simulate the effect of deep con-
vection on large-scale environmental properties (e.g. temperature, humidity, chemical tracers). How
convection affects the environment depends on the deep convective parameterization itself, but also on
the interplay with other parameterizations (e.g. shallow convection, large-scale condensation). The pro-
portion of the precipitation produced by the different parameterizations is arbitrary, but has important
consequences on heating/moistening profiles and chemical tracer transport. Here we explore the possibil-
ity of using profile measurements of water isotopic composition to add some constrain on the interplay
between convective parameterization and large-scale condensation, using the LMDZ GCM enabled with
isotopes ([8]).

q = specific humidity;δD= concentration in HDO inh anomalies relatively to sea water

Fig: Pictures illustrating a tropical convective region, and how the tropospheric water budget is repre-
sented by parametzrizations in a GCM. There are two kinds of balances: moistening large-scale ascent
compensated by dehydration by large-scale condensation (producing with large-scale precipPLS), and
moistening by convective detraiment compensated by dehydration by compensating subsidence (produc-
ing with convective precipPconv).
Observational and modeling studies suggest the enriching role of convective detrainment ([4]) and the
depleting role of unsaturated downdrafts ([6, 7]), rain reevaporation ([9]) and large-scale condensation
([3]).
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Complementarity q- δD
Fig: Rayleigh distillation (resulting from progressive dehydration by condensa-
tion) has a log shape while mixing has a hyperbolic shape ([9]). This explains
why large-scale condensation is more depleting than compensating subsidence
for a given dehydration.

Factors controling tropical water va-
por δD
Fig: Humidity tendencies from the different parameterizations, and theirδD
signature in the free troposphere (example in 1D). Convective detrainment has a
stronger enriching effect than large-scale ascent for a given moistening. Large-
scale condensation has a stronger depleting effect than compensating subsi-
dence for a given dehydration.

Example in 1D
Fig: Example for 1D radiative convective equilibrium. We use the LMDZ new physical
package allowing modifications of convection closure ([1]). We compare results for neutral
regime (ω = 0hPa/d) and convective regime (ω = −30hPa/d). Again, sensitivity tests with
largestPLS contribution lead to the strongest depletion in convectiveregime. This effect is
also confirmed when running 1D campaign cases (e.g. TWP-ice).
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Sensitivity tests
Example in 3D
Fig: Example over the Amazon. In the TES data, during the wet season, the water vapor
is more depleted in the lower troposphere and slightly more enriched in the upper tropo-
sphere. LMDZ reproduces this feature. Sensitivity tests show that the larger the contri-
bution of large-scale precipitation to the precipitation seasonal variation, the larger the
mid-tropospheric depletion during the wet season. This effect is not detected inq.

Perspectives
• collocate q, δD with cloud data, becauseq-cloud link

helps constrain large-scale condensation ([5]): e.g. A-train
(TES+CALIPSO/Cloudsat), IASI, ARM sites.

• improved process understanding: spatial structure around
convective systems, evolution during convective life cycles
and during MJO events using IASI data

• build a theroretical framework to interpret jointq, δD distri-
bution

• actually use isotopic data for model evaluation

• combine water isotopic tracers with air tracers (CO,O3, Be)?

Fig: Observed (IASI, [2]) and simulatedδD during the Novem-
ber 2011 CINDY-DYNAMO campaign case at 500hPa aver-
aged over 10S-10N.
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