How can we make use of water isotopic observations to better evaluate the representation of moist processes in climate models?

Camille Risi

LMD/IPSL/CNRS

Thanks to: Obbe Tuinenburg, John Worden, Jean-Lionel Lacour, Sandrine Bony, Françoise Vimeux

Ringberg, March 2014
Water isotopes

- $H_2^{16}O$, HDO, $H_2^{18}O$...
- fractionation during phase changes
Water isotopes

- $H_2^{16}O$, HDO, $H_2^{18}O$...
- fractionation during phase changes
Water isotopes

- $H_2^{16}O$, HDO, $H_2^{18}O$...
- fractionation during phase changes

present-day climate

meteorological variables

isotopic variables

physical processes

future climate

evaluate processes "isotopic test"

evaluate credibility

$H_2^{16}O \rightarrow HDO$
Water isotopes

- $H_2^{16}O$, HDO, $H_2^{18}O$...
- fractionation during phase changes

present-day climate

meteorological variables

isotopic variables

physical processes

future climate

evaluate credibility

past climates

isotopic proxies

evaluate processes "isotopic test" "paleo-test"
What can we use isotopes for?
What can we use isotopes for?

paleo applications (Jouzel et al. 80s, Thompson et al. 90s)
What can we use isotopes for?

paleo applications
(Jouzel et al 80s, Thompson et al 90s)

continental recycling,
(Salati 1979, Risi et al 2013)

E/T partitionning
(Gat and Matsui 1991, Aemisegger et al 2014)
What can we use isotopes for?

paleo applications
(Jouzel et al 80s, Thompson et al 90s)

continental recycling,
(Salati 1979, Risi et al 2013)

E/T partitionning
(Gat and Matsui 1991, Aemisegger et al 2014)

degree of organization
(Lawrence et al 2004)

unsaturated downdrafts, reevaporation
What can we use isotopes for?

- Convective detrainement
 - (Moyer et al. 1996, Webster and Heymsfield 2003)

- Ice microphysics
 - (Bolot et al. 2013)

- Paleo applications
 - (Jouzel et al. 80s, Thompson et al. 90s)

- Continental recycling
 - (Salati 1979, Risi et al. 2013)

- E/T partitionning
 - (Gat and Matsui 1991, Aemisegger et al. 2014)

- Degree of organization
 - (Lawrence et al. 2004)

- Unsaturated downdrafts, reevaporation
What can we use isotopes for?

- **vertical mixing** *(Risi et al. 2012)*
- **convective detrainement** *(Moyer et al. 1996, Webster and Heymsfield 2003)*
- **ice microphysics** *(Bolot et al. 2013)*
- **paleo applications** *(Jouzel et al. 80s, Thompson et al. 90s)*

- **continental recycling,** *(Salati 1979, Risi et al. 2013)*
- **E/T partitionning** *(Gat and Matsui 1991, Aemisegger et al. 2014)*
- **degree of organization** *(Lawrence et al. 2004)*
What can we use isotopes for?

vertical mixing
(Risi et al 2012)

convective detrainement
(Moyer et al 1996,
Webster and Heymsfield 2003)

ice microphysics
(Bolot et al 2013)

paleo applications
(Jouzel et al 80s,
Thompson et al 90s)

continental recycling,
(Salati 1979,
Risi et al 2013)

E/T partitioning
(Gat and Matsui 1991,
Aemisegger et al 2014)

degree of organization
(Lawrence et al 2004)

convective vs large-scale precipitation
(Lee et al 2009,
Kurita et al 2013,
(Risi et al in prep)

unsaturated downdrafts, reevaporation
(Lawrence et al 2004,
Worden et al 2007,
Risi et al 2008,2010)
Recent opportunities

- More and more measurements
Recent opportunities

- More and more measurements

- More and more GCMs have water isotopes (≈ 9), SWING2 intercomparison project
q-δD: moistening and dehydrating processes

100hPa

convective detrainment
convective ascent
large-scale condensation

compensating subsidence
unsaturated downdrafts
reevaporation

large-scale condensation
q-δD: moistening and dehydrating processes

100hPa

convective detrainment
convective ascent
large-scale condensation
unsaturated downdrafts
reevaporation
compensating subsidence

δD (‰)
q (g/kg)

large-scale condensation
subsidence
$q-\delta D$: moistening and dehydrating processes

Diagram showing processes such as convective condensation, detrainment, and subsidence. The graph illustrates the relationship between q (g/kg) and δD (permil) across different pressure levels (100hPa and 800hPa). The diagram also highlights large-scale condensation and reevaporation.
q-δD: moistening and dehydrating processes

- Convective ascent
- Convective detrainment
- Large-scale condensation
- Compensating subsidence
- Unsaturated downdrafts
- Reevaporation

$q \ (g/kg)$ vs. $\delta D \ (%)$

- Large-scale condensation
- Detrainment
- Rain
- Subsidence
- Reevaporation

Pressure levels:
- 800hPa
- 100hPa
What causes the moist bias in GCMs?

LMDZ:
- Control
What causes the moist bias in GCMs?

LMDZ sensitivity tests:
- Control
- Excessively diffusive vertical advection
- Excessive condensate detrainment
- Insufficient in-situ condensation

AIRS data

rel. humidity (%) 30°S-30°N
What causes the moist bias in GCMs?

LMDZ sensitivity tests:
- Red: Control
- Green: Excessively diffusive vertical advection
- Cyan: Excessive condensate detrainment
- Blue: Insufficient in-situ condensation
- Black: AIRS/ACE data

(Risi et al 2012)
What causes the moist bias in GCMs?

LMDZ sensitivity tests:
- **Red** Control
- **Green** Excessively diffusive vertical advection
- **Blue** Excessive condensate detrainment
- **Black** Insufficient in-situ condensation
- **AIRS/ACE data**
- **SWING2 models**

![Diagram showing factors affecting moist bias in GCMs](image)

- 100hPa
- Convective detrainment
- Compensating subsidence
- Unsaturated downdrafts
- Large-scale condensation
- Large-scale ascent
- Vertical diffusion

AIRS data

<table>
<thead>
<tr>
<th>JJA-DJF ΔδD (‰)</th>
<th>400 hPa, 15°N-30°N</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative humidity (%) 30°S-30°N</td>
<td></td>
</tr>
</tbody>
</table>

(Risi et al 2012)
What causes the moist bias in GCMs?

LMDZ sensitivity tests:
- Red: Control
- Green: Excessively diffusive vertical advection
- Cyan: Excessive condensate detrainement
- Black: Insufficient in-situ condensation
- AIRS/ACE data
- SWING2 models

Excessively diffusive advection = most frequent bias

(Risi et al 2012)
Convection/ large-scale partitionning

- Deep convection
- Shallow convection
- Large-scale condensation

- Detrainment
- Compensating subsidence
- Unsaturated downdrafts
- Reevaporation

100hPa

Surface
Water isotopes during the MJO

Hoevmuller diagram at 500hPa during Cindy-Dynamo, observed by IASI

δD anomaly (‰)
q anomaly (contours, %)
Water isotopes during the MJO

Hoevmuller diagram at 500hPa during Cindy-Dynamo, observed by IASI

mean $q - \delta D$ cycles at 500hPa in the Indian Ocean

Tuinenburg et al in prep
Water isotopes during the MJO

Hoevmuller diagram at 500hPa during Cindy-Dynamo, observed by IASI

Mean $q - \delta D$ cycles at 500hPa in the Indian Ocean

Tuinenburg et al in prep

enrichment by convective detrainment
maximum precip and q
deposition by large-scale condensation
deposition by rain reevaporation
Summary/Perspectives

- Lots of measurements exist but are still under-exploited
 - progress in understanding what controls water composition
 - but still a long way to go to exploit this understanding to use water isotopic measurements quantitatively
 - need theoretical/interpretative framework
Summary/Perspectives

- Lots of measurements exist but are still under-exploited
 - progress in understanding what controls water composition
 - but still a long way to go to exploit this understanding to use water isotopic measurements quantitatively
 - need theoretical/interpretative framework

- Combine δD with other variables:
 - $q-\delta D$ plots \rightarrow moistening and dehydrating processes
 - $q, \delta D +$ chemical tracers: CO, O_3, $^{10}Be \Rightarrow$ better characterize air/water fluxes
Summary/Perspectives

- Lots of measurements exist but are still under-exploited
 - progress in understanding what controls water composition
 - but still a long way to go to exploit this understanding to use water isotopic measurements quantitatively
 - need theoretical/ interpretative framework

- Combine δD with other variables:
 - $q - \delta D$ plots \rightarrow moistening and dehydrating processes
 - $q, \delta D +$ chemical tracers: $CO, O_3, ^{10}Be \Rightarrow$ better characterize air/water fluxes

- Model intercomparison projects with isotopes:
 - SWING: AMIP simulations, monthly outputs, \approx 9 GCMs
 - next CMIP with isotopes? \rightarrow daily outputs, paleo
 - goal: isotopic diagnostics to detect/understand model biases
Summary/Perspectives

- Lots of measurements exist but are still under-exploited
 - progress in understanding what controls water composition
 - but still a long way to go to exploit this understanding to use water isotopic measurements quantitatively
 - need theoretical/interpretative framework

- Combine δD with other variables:
 - q-δD plots -> moistening and dehydrating processes
 - q, δD + chemical tracers: CO, O_3, ^{10}Be ⇒ better characterize air/water fluxes

- Model intercomparison projects with isotopes:
 - SWING: AMIP simulations, monthly outputs, \simeq9 GCMs
 - next CMIP with isotopes? -> daily outputs, paleo
 - goal: isotopic diagnostics to detect/understand model biases

- isotopic CRMs to study processes
 - e.g. SAM (Blossey et al 2010, Moore et al 2014)
 - compare with SCMs? e.g. RCE simulations, campaign cases, conditional sampling (e.g. Couvreux et al 2010)