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1 Introdution49 Land-surfae models (LSMs) used in limate models exhibit a large spread in the way they partition ra-50 diative energy into sensible and latent heat ([Henderson-Sellers et al., 2003, Qu and Henderson-Sellers, 1998℄,51 preipitation into evapo-transpiration and runo� ([Koster and Milly, 1996, Polher et al., 1996, Wetzel et al., 1996℄),52 evapo-transpiration into transpiration and bare soil evaporation ([Desborough et al., 1996, Mahfouf et al., 1996℄),53 and runo� into surfae runo� and drainage ([Duharne et al., 1998, Boone and Coauthors, 2004, Boone et al., 2009℄).54 This results in an large spread in the predited response of surfae temperature ([Crossley et al., 2000℄)55 and hydrologial yle ([Gedney et al., 2000, Milly et al., 2005℄) to limate hange ([Crossley et al., 2000℄)56 or land use hange ([Lean and Rowntree, 1997, Pitman et al., 2009℄). Therefore, evaluating the au-57 ray of the partitioning of preipitation into surfae runo�, drainage, transpiration and bare soil evap-58 oration (hereafter alled the soil water budget) in LSMs is ruial to improve our ability to predit59 future hydrologial and limati hanges.60 The evaluation of LSMs is hampered by the di�ulty to measure over large areas the di�erent61 terms of the soil water budget, notably the evapo-transpiration terms and the soil moisture stor-62 age ([Moran et al., 2009, Seneviratne et al., 2010℄). Single point measurements of evapo-transpiration63 �uxes ([Baldohi et al., 2001℄) and soil moisture ([Robok et al., 2000℄) are routinely performed within64 international networks, but those measurements remain di�ult to upsale to a limate model grid box65 due to the strong horizontal heterogeneity of the land surfae ( [Vahaud et al., 1985, Rodriguez-Iturbe et al., 1995℄).66 Spatially-integrated data suh as river runo� observations are very valuable to evaluate soil water bud-67 gets at the regional sale ([Nijssen et al., 1997, Oki and Sud, 1998℄), but are insu�ient to onstrain68 the di�erent terms of the water budget. Additional observations are therefore needed.69 In this ontext, water isotope measurements have been suggested to help onstrain the soil wa-70 ter budget ([Gat, 1996, Henderson-Sellers et al., 2004℄), its variations with limate or land use hange71 ([Henderson-Sellers et al., 2001℄), and its representation by large-salemodels ([Henderson-Sellers, 2006,72 Wong, 2016℄). For example, water stable isotope measurements in the di�erent water pools of the73 soil-vegetation-atmosphere ontinuum have been used to quantify the relative ontributions of tran-74 spiration and bare soil evaporation to evapo-transpiration ([Moreira et al., 1997, Yepez et al., 2003,75 3



Williams et al., 2004, Rothfuss et al., 2010℄), to infer plant soure water depth ([Brunel et al., 1997℄),76 to assess the mass balane of lakes ([Krabbenhoft, 1990, Gibson, 2002, Gibson and Edwards, 2002℄)77 or to investigate pathways from preipitation to river disharge ([Wels et al., 1991, Millet et al., 1997,78 Weiler et al., 2003, Ladouhe et al., 2001℄). These isotope-based tehniques generally require high fre-79 queny isotope measurements and are best suitable for intensive �eld ampaigns at the loal sale. At80 larger spatial and temporal sales, some attempts have been made to use regional gradients in preipi-81 tation water isotopes for partitioning evapo-transpiration into bare soil-evaporation and transpiration82 ([Salati et al., 1979, Gat and Matsui, 1991, Jasehko et al., 2013℄).83 To explore to what extent water isotope measurements ould be used to evaluate and improve land84 surfae parameterizations, water isotopes were implemented in the LSM ORCHIDEE (ORganizing85 Carbon and Hydrology In Dynami EosystEms, [Duoudré et al., 1993, Krinner et al., 2005℄). This86 isotopi version of ORCHIDEE has already been used to explore how tree-ring ellulose reords past87 limate variations ([Shi et al., 2011b℄) and to investigate the ontinental reyling and its isotopi88 signature in Western Afria ([Risi et al., 2010a℄) and at the global sale ([Risi et al., 2013℄.89 The �rst goal of this artile is to evaluate the isotopi version of the ORCHIDEE model against90 reently-made-available new datasets ombining water isotopes in preipitation, vapor, soil water and91 rivers. The seond goal is to evaluate the isotopi version of the ORCHIDEE model when oupled to the92 atmospheri general irulation model (GCM) LMDZ (Laboratoire de Météorologie Dynamique Zoom,93 [Hourdin et al., 2006℄). The third goal is to perform sensitivity tests to LSM parameters to identify94 proesses whose representation by LSMs ould be better evaluated using water isotopi measurements.95 After introduing notations and models in setion 2, we present ORCHIDEE simulations in a96 stand-alone mode at measurement sites (setion 3) and global ORCHIDEE-LMDZ oupled simulations97 (setion 4).98
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2 Notation and models99 2.1 Notations100 Isotopi ratios (HDO/H16
2 O or H18

2 O/H16
2 O) in the di�erent water pools are expressed in h rela-101 tive to a standard: δ =

(

Rsample

RSMOW
− 1

)

· 1000, where Rsample and RSMOW are the isotopi ratios of102 the sample and of the Vienna Standard Mean Oean Water (V-SMOW) respetively ([Craig, 1961,103 Gon�antini, 1978℄). To �rst order, variations in δD are similar to those in δ18O but are 8 times larger.104 Deviation from this behavior an be assoiated with kineti frationation and is quanti�ed by deu-105 terium exess (d = δD − 8 · δ18O, [Craig, 1961, Dansgaard, 1964℄). Hereafter, we note δ18Op, δ18Ov,106
δ18Os, δ18Ostem and δ18Oriver the δ18O of the preipitation, atmospheri vapor, soil, stem, river water107 respetively. The same subsripts apply for d.108 2.2 The LMDZ model109 LMDZ is the atmospheri GCM of the IPSL (Institut Pierre Simon Laplae) limate model ([Marti et al., 2005,110 Dufresne et al., 2012℄). We use the LMDZ-version 4 model ([Hourdin et al., 2006℄) whih was used in111 the International Panel on CLimate Change's Fourth Assessment Report simulations ([Solomon, 2007,112 Meehl et al., 2007℄). The resolution is 2.5◦ in latitude, 3.75◦ in longitude and 19 vertial levels.113 Eah grid ell is divided into four sub-surfaes: oean, land ie, sea ie and land (treated by OR-114 CHIDEE) (�gure E.1a). All parameterizations, inluding ORCHIDEE, are alled every 30 min. The115 implementation of water stable isotopes is similar to that in other GCMs ([Joussaume et al., 1984,116 Ho�mann et al., 1998℄) and has been desribed in [Bony et al., 2008, Risi et al., 2010b℄. LMDZ ap-117 tures reasonably well the spatial and seasonal variations of the isotopi omposition in preipitation118 ([Risi et al., 2010b℄) and water vapor ([Risi et al., 2012℄).119 2.3 The ORCHIDEE model120 The ORCHIDEE model is the LSM omponent of the IPSL limate model. It merges three sepa-121 rate modules: (1) SECHIBA (Shématisation des EChanges Hydriques a l'Interfae entre la Biosphère122 5



et l'Atmosphère, [Duoudré et al., 1993, De Rosnay, 1999℄) that simulates land-atmosphere water and123 energy exhanges, (2) STOMATE (Salay-Toulouse-OrsayModel for the Analysis of Terrestrial Eosys-124 tems, [Krinner et al., 2005℄) that simulates vegetation phenology and biohemial transfers ; and (3)125 LPJ (Lund-Postdam-Jena, [Sith, 2003℄) that simulates the vegetation dynamis. Water stable iso-126 topes were implemented in SECHIBA, and we use presribed land over maps so that the two other127 modules ould be de-ativated.128 Eah grid box is divided into up to 13 land over types: bare soil, tropial broad-leaved ever-green,129 tropial broad-leaved rain-green, temperate needle-leaf ever-green, temperate broad-leaved ever-green,130 temperate broad-leaved summer-green, boreal needle-leaf ever-green, boreal broad-leaved summer-131 green, boreal needle-leaf summer-green, C3 grass, C4 grass, C3 agriulture and C4 agriulture. Water132 and energy budgets are omputed for eah land over type.133 Figure E.1b illustrates how ORCHIDEE represents the surfae water budget. Rainfall is partitioned134 into intereption by the anopy and through-fall rain. Through-fall rain, snow melt, dew and frost �ll135 the soil. The soil is represented by two water reservoirs: a super�ial and a bottom one ([Choisnel, 1977,136 Choisnel et al., 1995℄). Taken together, the two reservoirs have a water holding apaity of 300 mm137 and a depth of 2 m. Soil water undergoes transpiration by vegetation, bare soil evaporation or runo�.138 Transpiration and evaporation rates depend on soil moisture to represent water stress in dry onditions.139 Runo� ours when the soil water ontent exeeds the soil holding apaity and is partitioned into140 95% drainage and 5% surfae runo� ([Ngo-Du, 2005℄). Snowfall �lls a single-layer snow reservoir,141 where snow undergoes sublimation or melt. By omparison, when not oupled to ORCHIDEE, the142 simple buket-like LSM in LMDZ makes no distintion neither between bare soil evaporation and143 transpiration nor between surfae runo� and drainage ([Manabe et al., 1965℄).144 Surfae runo� and drainage are routed to the oastlines by a water routing model ([Polher, 2003℄).145 Surfae runo� is stored in a fast ground water reservoir whih feeds the stream reservoir with residene146 time of 3 days. Drainage is stored in a slow ground water reservoir whih feeds the stream reservoir147 with residene time of 25 days. The water in the stream reservoir is routed to the oastlines with a148 residene time of 0.24 days.149 6



2.4 Implementation of water stable isotopes in ORCHIDEE150 We represent isotopi proesses in a similar fashion as other isotope-enabled LSMs ([Riley et al., 2002,151 Cuntz et al., 2003, Aleinov and Shmidt, 2006, Yoshimura et al., 2006, Haese et al., 2013℄). Some de-152 tails of the isotopi implementation are desribed in [Risi, 2009℄. In absene of frationation, water153 stable isotopes (H16
2 O, H18

2 O, HDO, H17
2 O) are passively transferred between the di�erent water154 reservoirs. We assume that surfae runo� has the isotopi omposition of the rainfall and snow melt155 that reah the soil surfae. Drainage has the isotopi omposition of soil water ([Gat, 1996℄). We al-156 ulate the isotopi omposition of bare soil evaporation or of evaporation of water interepted by the157 anopy using the Craig and Gordon equation ([Craig and Gordon, 1965℄) (appendix B.2). We neglet158 isotopi frationation during snow sublimation (appendix B.1). We onsider isotopi frationation at159 the leaf surfae (appendix B.4) but we assume that transpiration has the isotopi omposition of the160 soil water extrated by the roots (appendix B.1).161 In the ontrol oupled simulation, we assume that the isotopi omposition of soil water is homo-162 geneous vertially and equals the weighted average of the two soil layers. However, transpiration, bare163 soil evaporation, surfae runo� and drainage draw water from di�erent soil water reservoirs whose164 isotopi omposition is distint ([Brooks et al., 2010, Bowen, 2015, Good et al., 2015℄). Therefore, we165 also implemented a representation of the vertial pro�le of the soil water isotopi omposition (ap-166 pendix C).167 3 Stand-alone ORCHIDEE simulations at MIBA and Carbo-168 Europe measurement sites169 First, we performed simulations using ORCHIDEE as a stand-alone model at ten sites (setion 3.2).170 Using isotopi measurements in soil, stem and leaf water (setion 3.1), simulations are evaluated at171 eah site at the monthly sale (setion 3.4). Sensitivity tests to evapo-transpiration partitioning and172 soil in�ltration proesses are performed (setion 3.5).173
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3.1 Measurements used for evaluation174 To �rst order the omposition of all land surfae water pools is driven by that in the preipitation175 ([Kendall and Coplen, 2001℄). Therefore, a rigorous evaluation of an isotope-enabled LSM requires176 to evaluate the di�erene between the omposition in eah water pool and that in the preipitation.177 Besides, to better isolate isotopi biases, we need a realisti atmospheri foring. We tried to selet178 sites where (1) isotope were measured in di�erent water pools of the soil-plant-atmosphere ontinuum,179 during at least a full seasonal yle and (2) meteorologial variables were monitored at a frequeny180 high enough (30 minutes) to ensure robust foring for our model and (3) water vapor and preipitation181 were monitored to provide isotopi foring for the LSM. Only two sites satisfy these onditions: Le182 Bray and Yatir. Relaxing some of these onditions, we got a more a representative set of ten sites183 representing diverse limate onditions (table 1, �gure E.2, setion 3.1.1).184 3.1.1 Desription of the ten sites185 The ten sites belong to two kinds of observational networks: MIBA (Moisture Isotopes in the Biosphere186 and Atmosphere, [Twining et al., 2006, Knohl et al., 2007, Hemming et al., 2007℄) or Carbo-Europe187 ([Valentini et al., 2000, Hemming et al., 2005℄).188 Le Bray site, in South-Eastern Frane, joined the MIBA and GNIP network in 2007. It is an even-189 aged Maritime pine forest with C3 grass understory that has been the subjet of many eo-physiologial190 studies sine 1994, notably as part of the Carbo-Europe �ux network ([Stella et al., 2009℄). In 2007 and191 2008, samples in preipitation, soil surfae, needles, twigs and atmospheri vapor were olleted every192 month and analyzed for δ18O following the MIBA protool ([Hemming et al., 2007, Wingate et al., 2010℄).193 This site was also the subjet of intensive ampaigns where soil water isotope pro�les were olleted194 between 1993 and 1997, and in 2007 ([Wingate et al., 2009℄).195 The Yatir site, in Israel, is a semi-arid Aleppo pine forest. It is an a�orestation growing on the edge196 of the desert, with mean-annual preipitation of 280 mm ([Grünzweig et al., 2009, Raz-Yaseef et al., 2009℄).197 It has also been the subjet of many eo-physiologial studies as part of the Carbo-Europe �ux network198 ([Raz-Yaseef et al., 2009℄) and joined the MIBA network in 2004. It. In 2004-2005, samples of soil199 8



water at di�erent depth, stems and needles were olleted following the MIBA protool. The water200 vapor isotopi omposition has been monitored daily at the nearby Rehovot site (31.9◦N, 34.65E,201 [Angert et al., 2008℄) and is used to onstrut the water vapor isotopi omposition foring (setion202 3.2). We must keep in mind however that although only 66 km from Yatir, Rehovot is muh loser203 to the sea and is more humid than Yatir. The preipitation isotopi omposition has been moni-204 tored monthly at the nearby GNIP station Beit Dagan (32◦N, 34.82◦E) and is used to onstrut the205 preipitation isotopi omposition foring (setion 3.2).206 The Morgan-Monroe State Forest, Donaldson Forest and Anhorage sites are part of the MIBA-207 US (MIBA-United States) network and are loated in Indiana, in Florida and in Alaska respetively208 (table 1). Sampling took plae in 2005 and 2006 aording to the MIBA protools. The Donaldson209 Forest site, whih jointed the MIBA-US network in 2005, is loated at the AmeriFlux Donaldson site210 near Gainesville, Florida, USA. The site is �at with an elevation of about 50 m. It was overed by a211 forest of managed slash pine plantation, with an uneven understory omposed mainly of saw palmetto,212 wax myrtle and Carolina jasmine ([Zhang et al., 2010℄). The leaf area index was measured during a213 ampaign in 2003 and estimated at 2.85. We use this value in our simulations.214 The Mitra, Bily Kriz, Brloh, Hainih and Tharandt sites are part of the Carbo-Europe projet.215 Hainih and Tharandt are loated in Germany. The experimental site of Herdade da Mitra (230 m216 altitude, nearby Évora in southern Portugal) is haraterized by a Mediterranean mesothermi humid217 limate with hot and dry summers. It is a managed agroforestry system haraterized by an open218 evergreen woodland sparsely overed with Querus suber L. and Q. ilex rotundifolia trees (30 trees/ha),219 with an understorey mainly omposed of Cistus shrubs, and winter-spring C3 annuals. The isotopi220 samplings of leaves, twigs, soil, preipitation and groundwater were performed on a seasonal to monthly221 basis. All samples where extrated and analyzed at the Paul Sherrer Institute (Switzerland).222 Bily Kriz and Brloh are both loated on the Czeh Republi. Bily Kriz is an experimental site in223 Moravian�Silesian Beskydy Mountains (936 m a.s.l.) with detailed reords of environmental onditions224 ([Kratohvilová et al., 1989℄). It is dominated by Norway sprue forest. It joined the MIBA projet225 in the season 2005. Brloh is a South Bohemian site in the Proteted Landsape Area Blanskýles (630226 9



m a.s.l.). It is dominated by deiduous beeh forest and was used as MIBA sampling site from 2004227 to 2010 ([Voelker et al., 2014℄).228 3.1.2 Isotopi measurements229 Samples of soil water, stems and leaves were olleted at the monthly sale. The MIBA and MIBA-230 US protools reommend sampling the �rst 5-10 m exluding litter and the Carbo-Europe protool231 reommends sampling the �rst 5 m ([Hemming et al., 2005℄), but in pratie the soil water sampling232 depth varies from site to site. At some sites, soil water was sampled down to 1 m. For evaluating233 the seasonal evolution of soil water δ18O, we fous on soil samples olleted in the �rst 15 m only.234 Observed full soil water δ18O pro�les were used only at Le Bray and Yatir for evaluating the shape of235 simulated soil water δ18O pro�les (setion 3.4.4).236 Carbo-Europe samples were extrated and analyzed at the Department of Environmental Sienes237 and Energy Researh, Weizmann Institute of Siene, Israel. MIBA-US samples were extrated and238 analyzed at the Center for Stable Isotope Biogeohemistry of the University of California, Berkeley.239 Analytial errors for δ18O in soil, stem and leaf water vary from 0.1h to 0.2h depending on the sites240 and involved stable isotope laboratory.241 3.1.3 Meteorologial, turbulent �uxes and soil moisture measurements242 At most of the sites, meteorologial parameters (radiation, air temperature and humidity, soil temper-243 ature and moisture) are ontinuously measured and are used to onstrut the meteorologial foring244 for ORCHIDEE.245 Fluxes of latent and sensible energy are measured using the eddy o-variane tehnique and are246 used for evaluating the hydrologial simulation (setion 3.4.1). Gaps are �lled using ERA-Interim247 reanalyses ([Dee et al., 2011℄).248 Soil moisture observations are available at most sites.249
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3.2 Simulation set-up250 To evaluate in detail the isotope omposition of di�erent water pools, stand-alone ORCHIDEE sim-251 ulations on the ten MIBA and Carbo-Europe sites (setion 3.1.1) were performed. We presribe the252 vegetation type and properties and the bare soil fration based on loal knowledge at eah site (table253 3).254 ORCHIDEE o�ine simulations require as foring several meteorologial variables: near-surfae255 temperature, humidity and winds, surfae pressure, preipitation, downward longwave and shortwave256 radiation �uxes. At Le Bray and Yatir, we use loal meteorologial measurements available at hourly257 time sale. At other sites, we use loal meteorologial measurements when available and ombine them258 with ERA-Interim reanalyses at 6-hourly time sale for missing variables. At other sites, no nearby259 meteorologial measurements are available and only ERA-Interim reanalyses ([Dee et al., 2011℄) are260 used (table 3).261 At eah site, we run the model three times over the �rst year of isotopi measurement (e.g. 2007262 at Le Bray). These three years are disarded as spin-up. Then we run the model over the full period263 of isotopi measurements (e.g. 2007-2008 at Le Bray). We heked that at all sites, the seasonal264 distribution of δ18Os, whih is the slowest variable to spin-up, is idential between the last year of265 spin-up and the following year.266 We fore ORCHIDEE with monthly isotopi omposition of preipitation and near-surfae water267 vapor. Sine we evaluate the results at the monthly time sale, we assume that monthly isotopi foring268 is su�ient. At Le Bray and Yatir, monthly observations of isotopi omposition of preipitation and269 near-surfae water vapor are available to onstrut the foring. Unfortunately, these observations are270 not available on the other sites. Therefore, we reate isotopi foring using isotopi measurements in271 the preipitation performed on nearby GNIP or USNIP stations (setion 4.3.1). To interpolate between272 the nearby stations, we take into aount spatial gradients and altitude e�ets by exploiting outputs273 from an LMDZ simulation (appendix D).274
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3.3 Model-data omparison methods275 3.3.1 Simulated isotopi omposition in soil, stem and leaf water276 The soil pro�le option is ativated in all our stand-alone ORCHIDEE simulations (appendix C). We277 ompare the soil water samples olleted in the �rst 15 m of the soil (in the �rst 5-10 m at many278 sites) to the soil water omposition simulated in the uppermost layer.279 The observed omposition of stem water is ompared to the simulated omposition of the transpi-280 ration �ux.281 When omparing observed and simulated omposition of leaf water, the Pelet e�et, whih mixes282 stomatal water with xylem water (appendix B.7), is deativated. Negleting the Pelet e�et may lead283 to overestimate of δ18Oleaf values (setion 3.4.5).284 3.3.2 Impat of the temporal sampling285 Over the ten sites, samples were olleted during spei� days and hours. This temporal sampling286 may indue artifats when omparing observations to monthly-mean simulated ORCHIDEE values.287 For soil and stem water, the e�et of temporal sampling an be negleted beause simulated soil and288 stem water omposition vary at a very low frequeny. For leaf water however, there are large diurnal289 variations ([Lai et al., 2006a℄). For example, if leaf water is sampled every day at noon when δ18Oleaf290 is maximum, then observed δ18Oleaf will be more enrihed than monthly-mean δ18Oleaf . The exat291 sampling time is available for Le Bray site only, where we will estimate the e�et of temporal sampling292 in setion 3.4.5.293 3.3.3 Spatial heterogeneities294 We are aware of the sale mismath between puntual in-situ measurements and an LSM designed295 for large sales (a typial GCM grid box is more than 100 km wide). However, for soil moisture296 it has been shown that loal measurements represent a ombination of small sale (10-100m) vari-297 ability ([Vahaud et al., 1985, Rodriguez-Iturbe et al., 1995℄) and a large-sale (100-1000km) signal298 ([Vinnikov et al., 1996℄) that a large-sale model should apture ([Robok et al., 1998℄). The sampling299 12



protool allows us to evaluate the spatial heterogeneities. For example at Le Bray, two samples were300 systematially taken a few meters apart, allowing us to alulate the di�erene between these two301 samples. On average over all months, the di�erene between the two samples is 3.5h for δ18Os, 4.8h302 for δ18Ostem and 1.3 h for δ18Oleaf . At Yatir, samples were taken several days every month, allowing303 us to alulate a standard deviation between the di�erent samples for every month. On average of all304 months, the standard deviation is 0.9h for δ18Os, 0.4h for δ18Ostem and 1.2 h for δ18Oleaf . These305 error bars need to be kept in mind when assessing model-data agreement.306 3.3.4 Soil moisture307 Soil moisture have a di�erent physial meaning in observations and model. Soil moisture is measured308 as volumetri soil water ontent (SWC) and expressed in %. In ORCHIDEE, the soil moisture is309 expressed in mm and annot be easily onverted to volumetri soil water ontent: the maximum310 soil water holding apaity of 300 mm and soil depth of 2 m are arbitrary hoies and do not re�et311 realisti values at all sites. In LSMs, soil moisture is more an index than an atual soil moisture ontent312 ([Koster and Milly, 1996℄). In this version of ORCHIDEE in partiular, it is an index to ompute soil313 water stress, but it was not meant to be ompared with soil water ontent measurements. Therefore,314 to ompare soil moisture between model and observations, we normalize values to ensure that they315 remains between 0 and 1. The observed normalized SWC is alulated as SWC−SWCmin

SWCmax−SWCmin
where316

SWCmin and SWCmax are the minimum and maximum observed values of monthly SWC at eah317 site. Similarly, simulated normalized SWC is alulated as SWC−SWCmin

SWCmax−SWCmin
where SWCmin and318

SWCmax are the minimum and maximum simulated values of monthly SWC at eah site.319 3.4 Evaluation at measurement sites320 In this setion, we evaluate the simulated isotopi omposition in di�erent water reservoirs of the321 soil-vegetation-atmosphere ontinuum at the seasonal sale.322
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3.4.1 Hydrologial simulation323 Before evaluating the isotopi omposition of the di�erent water reservoirs, we hek whether the324 simulations are reasonable from a hydrologial point of view. ORCHIDEE aptures reasonably well325 the magnitude and seasonality of the latent and sensible heat �uxes at most sites (�gures E.3 and E.4,326 left olumn). At Le Bray for example, the orrelation between monthly values of evapo-transpiration327 is 0.98 and simulated and observed annual mean evapo-transpiration rates are 2.4mm/d and 2.0mm/d328 respetively. However, the model tends to overestimate the latent heat �ux at the expense of the329 sensible heat �ux at several sites. This is espeially the ase at the dry sites Mitra and Yatir: the330 observed evapo-transpiration is at its maximum in spring and then delines in summer due to soil331 water stress. ORCHIDEE underestimates the e�et of soil water stress on evapo-transpiration and332 maintains the evapo-transpiration too strong throughout the summer.333 The soil moisture seasonality is very well simulated at all sites where data is available (�gures E.3334 and E.4, entral olumn), exept for a two-month o�set at Yatir (�gure E.3f).335 3.4.2 Water isotopes in the soil water336 The evaluation of the isotopi omposition of soil water is ruial before using ORCHIDEE to inves-337 tigate the sensitivity to the evapo-transpiration partitioning (setion 3.5.1) or to in�ltration proesses338 (setion 3.5.2), or in the future to simulate the isotopi omposition of paleo-proxies suh as speleothems339 ([MDermott, 2004℄).340 In observations, at all sites, δ18Os remains lose to δ18Op, within the relatively large month-to-341 month noise and spatial heterogeneities (�gures E.3 and E.4, right olumn, brown). At most sites (Le342 Bray, Donaldson Forest, Anhorage, Bily Kriz and Hainih), observed δ18Os exhibits no lear seasonal343 variations distinguishable from month-to-month noise. At Morgan-Monroe and Mitra, and to a lesser344 extent at Brloh and Tharandt, δ18Os progressively inreases throughout the spring, summer and early345 fall, by up to 5h at Morgan-Monroe. The inrease in δ18Os in spring an be due to the inrease in346
δ18Op. The inrease in δ18Os in late summer and early fall, while δ18Op starts to derease, is probably347 due to the enrihing e�et of bare soil evaporation. At Yatir, δ18Os inreases by 10h from January348 14



to June, probably due to the strong evaporative enrihment on this dry site. Then, the δ18Os starts349 to deline again in July. This ould be due to the di�usion of depleted atmospheri water vapor in the350 very dry soil.351 ORCHIDEE aptures the order of magnitude of annual-mean δ18Os on most sites, and aptures352 the fat that it remains lose to δ18Op. ORCHIDEE aptures the typial δ18Os seasonality, with353 an inrease in δ18Os in spring-summer at Morgan-Monroe, Donaldson Forest, Mitra and Bily Kriz.354 However, the sites with a spring-summer enrihment in ORCHIDEE are not neessarily those with355 a spring-summer enrihment in observations. This means that ORCHIDEE misses what ontrols the356 inter-site variations in the amplitude of the δ18Os seasonality. The seasonality is not well simulated at357 Yatir. This ould be due to the missed seasonality in soil moisture and evapo-transpiration (setion358 3.4.1). This ould be due also to the fat that at Yatir ORCHIDEE underestimates the proportion of359 bare soil evaporation to total evapo-transpiration: less than 10% in ORCHIDEE versus 38% observed360 ([Raz-Yaseef et al., 2009℄), whih ould explain why the spring enrihment is underestimated. Besides,361 ORCHIDEE does not represent the di�usion of water vapor in the soil, whih ould explain why the362 observed δ18Os derease at Yatir in fall is missed.363 When omparing the di�erent sites, annual-mean δ18Os follows annual-mean δ18Op , with an inter-364 site orrelation of 0.99 in observations. Therefore, it is easy for ORCHIDEE to apture the inter-site365 variations in annual-mean δ18Os. A more stringent test is whether ORCHIDEE is able to apture366 the inter-site variations in annual-mean δ18Os − δ18Op. This is the ase, with a orrelation of 0.85367 (�gure E.5a) between ORCHIDEE and observations. In ORCHIDEE (and probably in observations),368 spatial variations in δ18Os − δ18Op are assoiated with the relative importane of bare soil evaporation369 (detailed in setion 3.5.1).370 3.4.3 Water isotopes in the stem water371 In observations, observed δ18Ostem exhibits no seasonal variations distinguishable from month-to-372 month noise (�gures E.3 and E.4, right olumn, blue). At Le Bray, Yatir, Mitra, Brloh, Hainih,373 observed δ18Ostem is more depleted than the surfae soil water. It likely orresponds to the δ18O374 15



values in deeper soil layers, suggesting that the rooting system is quite deep. For example, at Mitra,375 the root system reahes least 6 m deep, and ould at some plaes reah as deep as 13 m where it ould376 use depleted ground water. At Donaldson Forest, Morgan-Monroe, Anhorage and Tharandt, δ18Ostem377 is very lose to δ18Os, maybe re�eting small vertial variations in isotopi omposition within the soil378 or shallow root pro�les.379 At Bily Kriz, observed δ18Ostem is surprisingly more enrihed than surfae soil water. Several380 hypotheses ould explain this result: (1) the surfae soil water ould be depleted by dew or frost at381 this mountainous, foggy site; (2) sprue has shallow roots and therefore sample soil water that is not so382 depleted; (3) the twigs that were sampled were relatively young so that evaporation from their surfae383 ould have ourred when they were still at tree; (4) twigs were sampled in sun-exposed part of the384 sprue rowns during sunny onditions, whih ould favor some evaporative enrihment. Additional385 measurements show a lower Deuterium exess in the stem water ompared to the soil water, supporting386 evaporative enrihment of stems.387 ORCHIDEE aptures the fat that δ18Ostem is nearly uniform throughout the year. As for soil388 water, it is easy for ORCHIDEE to apture the inter-site variations in annual-mean δ18Ostem (inter-389 site orrelation between ORCHIDEE and observations of 0.90). ORCHIDEE is able to apture some390 of the inter-site variations in annual-mean δ18Ostem − δ18Op, with a inter-site orrelation between391 ORCHIDEE and observations of 0.60. However, ORCHIDEE simulates δ18Ostem values that are very392 lose to δ18Os values (�gure E.5b). It is not able to apture δ18Ostem values that are either more393 enrihed or more depleted than δ18Os. This ould be due to the fat that ORCHIDEE underestimates394 vertial variations in soil isotopi omposition (setion 3.4.4). Also, ORCHIDEE is not designed to395 represent deep ground water soures or photosynthesizing twigs.396 3.4.4 Vertial pro�les of soil water isotope omposition397 At Le Bray, we ompare our o�ine simulation for 2007 with soil pro�les olleted from 1993 to 1997398 and in 2007 (�gure E.6a-b). The year mismath adds a soure of unertainty to the omparison. In399 summer (pro�les of August 1993 and September 1997), the data exhibits an isotopi enrihment at400 16



the soil surfae of about 2.5h ompared to the soil at 1 m depth (�gure E.6a), likely due to surfae401 evaporation ([Mathieu and Baria, 1996℄). Then, by the end of September 1994, the surfae beomes402 depleted, likely due to the input of depleted rainfall. Previously enrihed water remains between 20403 and 60 m below the ground, suggesting an in�ltration through piston-�ow ([Gazis and Geng, 2004℄).404 ORCHIDEE predits the summer isotopi enrihment at the surfae, but slightly later in the season405 (maximum in September rather than August) and underestimates it ompared to the data (1.5h406 enrihment ompared to 2.5h observed, �gure E.6b). The model also aptures the surfae depletion407 observed after the summer, as well as the imprint of the previous summer enrihment at depth.408 However, ORCHIDEE simulates the surfae depletion in Deember, whereas the surfae depletion an409 be observed sooner in the data, at the end of September 1994.410 At Yatir, observed pro�les exhibit a strong isotopi enrihment from deep to shallow soil layers411 in May-June by up to 10h (�gure E.6). As for Le Bray, the model aptures but underestimates412 this isotopi enrihment in spring and summer by about 3h (�gure E.6d). This disrepany ould be413 the result of underestimated bare soil evaporation. Observed pro�les also feature a depletion at the414 surfae in winter that the model does not reprodue. This depletion ould be due to bak-di�usion of415 depleted vapor in dry soils ([Barnes and Allison, 1983, Allison et al., 1983, Mathieu and Baria, 1996,416 Braud et al., 2009b℄), a proess that is not represented in ORCHIDEE but likely to be signi�ant in417 this region. Soil evaporation �uxes measured with a soil hamber at Yatir shows that when soils are418 dry, there is adsorption of vapor from the atmosphere to the dry soil pores before sunrise and after419 sunset ([Raz-Yaseef et al., 2012℄).420 3.4.5 Water isotopes in leaf water421 It is important to evaluate the simulation of the isotopi omposition of leaf water by ORCHIDEE if422 we want to use this model in the future for the simulation of paleo-limate proxies suh tree-ring el-423 lulose ([MCarroll and Loader, 2004, Shi et al., 2011a℄), for the simulation of the isotopi omposition424 of atmospheri CO2 whih may be used to partition CO2 �uxes into respiration from vegetation and425 soil ([Yakir and Wang, 1996, Yakir and Sternberg, 2000℄) or for the simulation of the isotopi om-426 17



position of atmospheri O2 whih may be used to infer biologial produtivity ([Bender et al., 1994,427 Blunier et al., 2002℄).428 In the observations, δ18Oleaf exhibits a large temporal variability re�eting a response to hanges429 in environmental onditions (e.g. relative humidity and the isotopi omposition of atmospheri water430 vapor). At all sites exept at Yatir, δ18Oleaf is most enrihed in summer than in winter, by up to 15h.431 (�gures E.3 and E.4, right olumn, green). This is beause the evaporative enrihment is maximum in432 summer due to drier and warmer onditions .433 ORCHIDEE aptures the maximum enrihment in summer. However, ORCHIDEE underestimates434 the annual-mean δ18Oleaf at most sites (�gure E.5). This ould be due to the fat that most leaf435 samples were olleted during the day, when the evaporative enrihment is at its maximum, while for436 ORCHIDEE we plot the daily-mean δ18Oleaf . At Le Bray, if we sample the simulated δ18Oleaf during437 the orret days and hours, simulated δ18Oleaf inreases by 4h in winter and by 10h in summer.438 Suh an e�et an thus quantitatively explain the model-data mismath. After taking this e�et439 into aount, simulated δ18Oleaf may even beome more enrihed than observed. This is the ase at440 Le Bray, espeially in summer. The overestimation of summer δ18Oleaf ould be due to negleting441 di�usion in leaves or non-steady state e�ets (appendix B.4).442 Again, Yatir is a partiular ase. Minimum δ18Oleaf ours in spring-summer while the soil evap-443 orative enrihment is maximum. In arid regions and seasons, leaves may lose stomata during the444 most stressful periods of the day, inhibiting transpiration, and thus retain the depleted isotopi signal445 assoiated with the moister onditions of the morning ([Yakir and Yehieli, 1995, Gat et al., 2007℄).446 ORCHIDEE does not represent this proess and thus simulates too enrihed δ18Oleaf .447 3.4.6 Summary448 Overall, ORCHIDEE is able to reprodue the main features of the seasonal and vertial variations449 in soil water isotope ontent, and seasonal variations in stem and leaf water ontent. Disrepanies450 an be explained by some sampling protools, by shortomings in the hydrologial simulation or by451 negleted proesses in ORCHIDEE (e.g. frationation in the vapor phase).452 18



The strong spatial heterogeneity of the land surfae at small sales does not prevent ORCHIDEE453 from performing reasonably well. This suggests that in spite of some small-sale spatial heterogeneities454 at eah site, loal isotope measurements ontain large-sale information and are relevant for the eval-455 uation of large-sale LSMs.456 3.5 Sensitivity analysis457 3.5.1 Sensitivity to evapo-transpiration partitioning458 Several studies have attempted to partition evapo-transpiration into the transpiration and bare soil459 evaporation terms at the loal sale ([Moreira et al., 1997, Yepez et al., 2003, Williams et al., 2004,460 Wang et al., 2010℄). Estimating E/ET , where E is the bare soil evaporation and ET is the evapo-461 transpiration, requires measuring the isotopi omposition of soil water, stem water and of the evapo-462 transpiration �ux. The isotopi omposition of the evapo-transpiration an be estimated through463 �Keeling plots� approah ([Keeling, 1961℄), but this is ostly ([Moreira et al., 1997℄) and the assump-464 tions underlying this approah are not always valid ([Noone et al., 2012℄).465 Considering a simple soil water budget at steady state and with vertially-uniform isotopi distri-466 bution (appendix E), we show that although estimating E/ET requires measuring the isotopi ompo-467 sition of the evapo-transpiration �ux, estimating E/I (where I is the preipitation that in�ltrates into468 the soil) requires measuring temperature, relative humidity (h) and the isotopi omposition of the469 soil water (δ18Os), water vapor (δ18Ov) and preipitation (δ18Op) only. Suh variables are available470 from several MIBA and Carbo-Europe sites. More spei�ally, E/I is proportional to δ18Op − δ18Os471 (appendix E):472
E/I =

αeq · αK · (1 − h) ·
(

δ18Op − δ18Os

)

(δ18Os + 103) · (1 − αeq · αK · (1 − h)) − αeq · h · (δ18Ov + 103)
(3.1)where αeq and αK are the equilibrium and kineti frationation oe�ients respetively.473 Below, we show that this equation an apply to annual-mean quantities, negleting e�ets assoiated474 with daily or monthly o-variations between di�erent variables. We investigate to what extent this475 equation allows us to estimate the magnitude of E/I at loal sites.476 19



At the Yatir site, all the neessary data for equation 3.1 is available. An independent study has477 estimated E/I=38% ([Raz-Yaseef et al., 2009℄). Using annually averaged observed values (δ18Op =-478 5.1h and δ18Os=-3.7h in the the surfae soil), we obtain E/I=46%. However, in ORCHIDEE, the479 annually averaged surfae δ18Os is 0.8h lower when sampled at the same days as in the data. When480 orreting for this bias, we obtain E/I=28%. Observed E/I lies between these two estimates. This481 shows the appliability of this estimation method, keeping in mind that estimating E/I is the most482 aurate where E/I is lower.483 When we perform sensitivity tests to ORCHIDEE parameters at the various sites, the main fator484 ontrolling δ18Os is the E/I fration. This is illustrated as an example at Le Bray and Mitra sites485 (�gure E.7). Sensitivity tests to parameters as diverse as the rooting depth or the stomatal resistane486 lead to hanges in δ18Os − δ18Op and in E/I that are very well orrelated, as qualitatively predited487 by equation E.4. This means that whatever the reason for a hange in E/I, the e�et on δ18Os−δ18Op488 is very robust.489 Quantitatively, the slope of δ18Os − δ18Op as a funtion of E/I among the ORCHIDEE tests is490 of 0.78h/% (r=0.94, n=6) at Le Bray and of 0.25h/% (r=0.999, n=5) at Mitra, ompared to about491 0.25-0.3h/% predited by equation E.4. The agreement is thus very good at Mitra. The better492 agreement at Mitra is beause it is a dry site where E/I varies greatly depending on sensitivity tests.493 In ontrast, Le Bray is a moist site where E/I values remains small for all the sensitivity tests, so494 numerous e�ets other than E/I and negleted in equation E.4 an impat δ18Os − δ18Op.495 To summarize, loal observations of δ18Os − δ18Op ould help onstrain the simulation of E/I in496 models. This would be useful sine the evapo-transpiration partitioning has a strong impat on how497 an LSMs represents land-atmosphere interations ([Lawrene et al., 2007℄).498 3.5.2 Sensitivity to soil in�ltration proesses499 Partitioning between evapo-transpiration, surfae runo� and drainage depends ritially on how pre-500 ipitation water in�ltrates the soil ([Wetzel et al., 1996, Duharne et al., 1998, Boone et al., 2009℄),501 whih is a key unertainty even in multi-layer soil models where in�ltration proesses are represented502 20



expliitly ([De Rosnay, 1999℄). It has been suggested that observed isotopi pro�les ould help under-503 stand in�ltration proesses at the loal sale ([Gazis and Geng, 2004℄). The apaity of ORCHIDEE504 to simulate soil pro�les (setion 3.4.4) allows us to investigate whether measured isotope pro�les in505 the soil ould help evaluate the representation of these proesses also in large-sale LSMs.506 With this aim, we performed sensitivity tests at Le Bray. The simulated pro�les are sensitive to507 vertial water �uxes in the soil. When the di�usivity of water in the soil olumn is dereased by a fator508 10 from 0.1 to 0.01 ompared to the ontrol simulation, the deep soil layer beomes more depleted by509 about 0.7h (�gure E.8, blue) and the isotopi gradient from soil bottom to top beomes 30% steeper510 in summer, beause the enrihed soil water di�uses slower through the soil olumn.511 Simulated pro�les are also sensitive to the way preipitation in�ltrates the soil. When preipitation512 is added only to the top layer (piston-�ow in�ltration) the summer enrihment is redued by mixing513 of the surfae soil water with rainfall, and it propagates more easily to lower layers during fall and514 winter. Conversely, when rainfall is evenly spread throughout the soil olumn (a rude representation515 of preferential pathway in�ltration), the surfae enrihment is slightly more pronouned and the deep516 soil water is more depleted by up to 0.8h in winter (�gure E.8, green). However, the observed surfae517 depletion ours in February with preferential pathways, ompared to Deember in the piston-like518 in in�ltration. The quik surfae depletion observed after the summer suggests that in�ltration is519 dominated by the piston-like mehanisms.520 To summarize, we show that vertial and seasonal variations of δ18Os are very sensitive to in�ltra-521 tion proesses, and are a powerful tool to evaluate the representation of these proesses in LSMs.522 4 Global-sale simulations using the oupled LMDZ-ORCHIDEE523 model524 4.1 Simulation set-up525 To ompare with global datasets, we performed LMDZ-ORCHIDEE oupled simulations. In all our526 experiments, LMDZ three-dimensional �elds of horizontal winds are nudged towards ECMWF (Euro-527 21



pean Center for Medium range Weather Foreast) reanalyses ([Uppala et al., 2005℄). This ensures a528 realisti simulation of the large-sale atmospheri irulation and allows us to perform a day-to-day529 omparison with �eld ampaign data ([Yoshimura et al., 2008, Risi et al., 2010b℄). At eah time step,530 the simulated horizontal wind �eld ~u is relaxed towards the reanalysis following this equation:531
∂~u

∂t
= ~F +

~uobs − ~u

τwhere ~uobs is the reanalysis horizontal wind �eld, ~F is the e�et of all simulated dynamial and532 physial proesses on ~u, and τ is a time onstant set to 1h in our simulations ([Coindreau et al., 2007℄).533 To ompare with global datasets (setions 4.3.2 and 4.4), LMDZ-ORCHIDEE simulations are per-534 formed for the year 2006, hosen arbitrarily. We are not interested in inter-annual variations and fous535 on signals that are muh larger. To ensure that the water balane is losed at the annual sale, we per-536 formed iteratively 10 times the year 2006 as spin-up. In these simulations, the Pelet and non-steady537 state e�ets are de-ativated.538 To ompare with �eld ampaign observations in 2002 and 2005 (setion 4.2), we use simulations539 performed for these spei� years, initialized from the 2006 simulation. In these simulations, we test540 ativating or de-ativating the Pelet e�et.541 In all LMDZ-ORCHIDEE simulations, anopy-intereption was de-ativated (onsistent with sim-542 ulations that our modeling group performed for the Fourth Assessment Report).543 4.2 Evaluation of water isotopes in leaf water at the diel sale during am-544 paign ases545 4.2.1 Daily data from �eld ampaigns546 Two �eld ampaigns are used to evaluate the representation of δ18Oleaf diurnal variability. The �rst547 ampaign overs six diurnal yles in May and July 2002 in a grassland prairie in Kansas (39.20◦N548 96.58◦W , [Lai et al., 2006b℄). The seond ampaign overs four diurnal yles in June 2005 in a pine549 plantation in Hartheim, Germany (7.93◦N, 7.60◦E , [Barnard et al., 2007℄).550 Beause meteorologial and isotopi foring are not available for the entire year, we prefer to551 22



ompare these measurements with LMDZ-ORCHIDEE simulations. At both sites, the simulated δ18Ov552 and δ18Ostem are onsistent with those observed (model-data mean di�erene lower than 1.4h in553 Kansas and 0.4h at Hartheim), allowing us to fous on the evaluation of leaf proesses.554 4.2.2 Evaluation results555 At the Kansas grassland site, δ18Oleaf exhibits a diel yle with an amplitude of about 10h ([Lai et al., 2006b℄).556 LMDZ-ORCHIDEE aptures this diel variability, both in terms of phasing and amplitude (�gure E.9).557 The model systematially overestimates δ18Oleaf by about 4h, in spite of the underestimation of the558 stem water by 1.4h on average. This may be due to a bias in the simulated relative humidity (LMDZ559 is on average 13% too dry at the surfae, whih translates into an expeted enrihment bias of 3.9h560 on the leaf water assuming steady state based on equation B.6 of appendix B.4) or to unertainties in561 the kineti frationation during leaf water evaporation.562 At the Hartheim pine plantation, δ18Oleaf is on average 8h more depleted for urrent-year needles563 than for 1-year-old needles. Also, the observed diel amplitude is weaker for urrent-year needles (5 to564 8h) than for 1-year-old needles (10 to 15h). These observations are onsistent with a longer di�usion565 length for urrent-year needles (15 m) than for 1-year-old needles (5m) ([Barnard et al., 2007℄) and566 with a larger transpiration rate, leading to a stronger Pelet e�et. When negleting Pelet and non-567 steady state e�ets, ORCHIDEE simulates an average δ18Oleaf lose to that of 1-year-old needles,568 onsistent with the small di�usion length and evaporation rate of these leaves. ORCHIDEE aptures569 the phasing of the diurnal yle, but underestimates the diel amplitude by about 4h. This is probably570 due to the underestimate of the simulated diel amplitude of relative humidity by 20%. Aounting for571 Pelet and non-steady state e�ets strongly redues both the average δ18Oleaf and its diel amplitude572 (dashed brown on �gure E.9a), in loser agreement with urrent-year needles.573 To summarize, ORCHIDEE simulates well the leaf water isotopi omposition. The leaf water574 isotope alulation based on [Craig and Gordon, 1965℄ simulates the right phasing and amplitude for575 leaves that have short di�usive lengths or low transpiration rates. Non-steady state and di�usion576 e�ets need to be onsidered in other ases. By ativating or de-ativating these e�ets, ORCHIDEE577 23



an simulate all ases.578 4.3 Evaluation of water isotopes in preipitation579 4.3.1 Preipitation datasets580 To evaluate the spatial distribution of preipitation isotopi omposition simulated by the LMDZ-581 ORCHIDEE oupled model, we use data from the Global Network for Isotopes in Preipitation (GNIP,582 [Rozanski et al., 1993℄), further omplemented by data from Antartia ([Masson-Delmotte et al., 2008℄)583 and Greenland ([Masson-Delmotte et al., 2005℄). We also use this network to onstrut isotopi foring584 at sites where the preipitation was not sampled (setion 3.2, appendix D), omplemented with the585 USNIP (United States Network for Isotopes in Preipitation, [Vahon et al., 2007℄) network.586 4.3.2 Evaluation results587 At the global sale, the LMDZ-ORCHIDEE oupled model reprodues the annual mean distribution588 in δ18Op and dp observed by the GNIP network reasonably well (�gure E.10), with orrelations of 0.98589 and 0.46 and root mean square errors (RMSE) of 3.3h and 3.5h respetively.590 This good model-data agreement an be obtained even when we de-ativate ORCHIDEE. When we591 use LMDZ in a stand-alone mode, in whih the isotope frationation at the land surfae is negleted592 ([Risi et al., 2010b℄), the model-data agreement is as good as when we use LMDZ-ORCHIDEE. There-593 fore, frationating proesses at the land surfae have a seond order e�et on preipitation isotopi594 omposition, onsistent with [Yoshimura et al., 2006, Aleinov and Shmidt, 2006, Haese et al., 2013,595 Wong, 2016℄.596 To quantify in more detail the e�et of frationation at the land surfae, we performed additional597 oupled simulations with LMDZ-ORCHIDEE. We ompare the ontrol simulation desribed above598 (trl) to a simulation in whih frationation at the land surfae was de-ativated (nofra) (�gure E.11).599 In nofra, the omposition of bare soil evaporation equals that of soil water. Even when restriting600 the analysis to ontinental regions, the spatial orrelations between the trl and nofra simulations are601 0.999 and 0.95 for δ18Op and dp respetively, and the root mean square di�erenes are 0.27h and 1.1h602 24



for δ18Op and dp respetively. This on�rms that frationation at the land surfae has a seond-order603 e�et on preipitation isotopi omposition ompared to the strong impat of atmospheri proesses.604 However, to seond order, a detailed representation of frationation at the land surfae lead to605 a slight improvement in the simulation of δ18Op and to a signi�ant improvement in that of dp. In606 trl, δ18Op is lower by up to 1.5h and dp higher by up to 5h than in nofra over boreal ontinental607 regions suh as Siberia, Canada and entral Asia, onsistent with the expeted e�et of frationa-608 tion at surfae evaporation ([Gat and Matsui, 1991℄). Taking into aount frationation at the land609 surfae leads to a better agreement with the GNIP data over these regions, where δ18Op is overes-610 timated by about 4h and dp underestimated by 4 to 7h when negleting frationation at the land611 surfae. The e�et of frationation is maximal over these boreal regions beause (1) the fration612 of bare soil evaporation is maximal, (2) a signi�ant proportion of evaporatively-enrihed soil water613 is lost by drainage and (3) a larger proportion of the moisture omes from land surfae reyling614 ([Yoshimura et al., 2004, van der Ent et al., 2010, Risi et al., 2013℄). Similar results were obtained615 with other models ([Kanner et al., 2013℄).616 To summarize, LMDZ-ORCHIDEE simulates well the spatial distribution of preipitation isotopi617 omposition, but this distribution is not a very stringent test for the representation of land surfae pro-618 esses in ORCHIDEE. In the next setion, we argue that the distribution of river isotopi omposition619 is a more stringent test.620 4.4 Evaluation of water isotopes in river water621 Large rivers integrate a wide range of hydrologial proesses at the sale of GCM grid boxes ([Abdulla et al., 1996,622 Nijssen et al., 1997, Bosilovih et al., 1999, Oki and Sud, 1998, Duharne et al., 2003℄). Here we eval-623 uate the isotopi omposition of river water simulated by ORCHIDEE using data olleted by the624 Global Network for isotopes in Rivers (GNIR, [Vitvar et al., 2006, Vitvar et al., 2007℄).625 Observed annual mean δ18Oriver follows to �rst order the isotopi omposition of preipitation626 ([Kendall and Coplen, 2001℄), and is thus also well simulated by LMDZ-ORCHIDEE (�gure E.12a,b),627 with a spatial orrelation between measured and simulated δ18Oriver of 0.80 and a RMSE of 3.2h628 25



over the 149 LMDZ grid boxes ontaining data. Regionally however, the δ18O di�erene between629 preipitation and river water (δ18Oriver − δ18Op) an be substantial and provides a stronger onstraint630 for the model. Over South Ameria, Europe and some parts of the US, the river water is typially 1h631 to 4h more depleted than the preipitation (�gure E.12a), beause preipitation ontributes more to632 rivers during seasons when it is the most depleted ([Dutton et al., 2005℄). In ontrast, over entral Asia633 or northern Ameria, river water is more enrihed than preipitation, due to evaporative enrihment634 of soil water ([Kendall and Coplen, 2001, Gibson et al., 2005, Dutton et al., 2005℄). This is further635 on�rmed by a simulation where frationation at the land surfae was negleted (not shown), for636 whih the river water is in global average 5.0h more depleted.637 ORCHIDEE reprodues moderately well the magnitude and patterns of δ18Oriver − δ18Op, with a638 spatial orrelation of 0.39 and a RMSE of 2.7h over the 22 LMDZ grid boxes that ontain δ18Oriver639 observations. It simulates the negative values over the western US, Europe and South Ameria and the640 positive value over Mongolia. However, the model does not apture the positive δ18Oriver − δ18Op in641 Eastern US, though positive values are simulated further North. This suggests that suh a diagnosti642 may help identify biases in the representation of the soil water budget, as disussed in the following643 setion.644 4.5 Sensitivity to the representation of pathways from preipitation to645 rivers646 At the loal sale, water isotopes have already been used to partition river disharge peaks into the on-647 tributions from reent rainfall and soil water ([Wels et al., 1991, Millet et al., 1997, Weiler et al., 2003℄).648 Given the property of rivers to integrate hydrologial proesses at the basin sales ([Abdulla et al., 1996,649 Nijssen et al., 1997, Bosilovih et al., 1999, Oki and Sud, 1998, Duharne et al., 2003℄), we now ex-650 plore to what extent δ18Oriver ould help evaluate pathways from preipitation to rivers in LSMs.651 We illustrate this using seasonal variations in δ18Oriver on two well established GNIR and GNIP652 stations in Vienna (Danube river) and Manaus (the Amazon) (�gure E.13). The seasonal yle in653
δ18Oriver is attenuated ompared to that in δ18Op, and δ18Oriver lags δ18Op (by 5 month at Vienna654 26



and 1-3 months at Manaus).655 LMDZ-ORCHIDEE (ontrol simulation) simulates qualitatively well the amplitude and the phasing656 observed in δ18Op and δ18Oriver . To understand better what determines the attenuation and lag of the657 seasonality in δ18Oriver ompared to that in δ18Op, we perform sensitivity tests to ORCHIDEE pa-658 rameters. Parameters tested inlude the partitioning of exess rainfall into surfae runo� and drainage659 and the residene time sale of di�erent reservoirs (slow, fast and stream) in the routing sheme. River660 disharge is extremely sensitive to these parameters ([Guimberteau et al., 2008℄).661 If all the runo� ours as surfae runo� (�gure E.13, blue), then the seasonal yle of δ18Oriver662 is similar to that of δ18Op. This shows that the attenuation and lag of the seasonality in δ18Oriver663 ompared to that in δ18Op are aused by the storage of water into the slow reservoir, whih aumulates664 drainage water.665 When the residene time sale of the slow reservoir is multiplied by 2 (i.e. the water from the slow666 reservoir is poured twie faster into the streams, �gure E.13, red), the simulated lag of δ18Oriver at667 Vienna inreases from 4 to 5 months (in loser agreement with the data). In ontrast, the seasonal668 yle in δ18Oriver is not sensitive to residene time sales in the stream and fast reservoirs, whih are669 too short to have any impat at the seasonal sale.670 To summarize, ORCHIDEE performs well in simulating the seasonal variations in δ18Oriver . In671 turn, δ18Oriver observations ould help estimate the proportion of surfae runo� versus drainage and672 alibrate empirial residene time onstants in the routing sheme, o�ering a mean to enhane model673 performane.674 4.6 Evapo-transpiration partitioning675 In this setion, we generalize at the global sale our results on evapo-transpiration partitioning esti-676 mates (setion 3.5.1).677 We apply equation 3.1 to annual-mean outputs from a LMDZ-ORCHIDEE simulation. We ompare678
E/I estimated from equation 3.1 to E/I diretly simulated by LMDZ-ORCHIDEE. The spatial pattern679 of E/I is remarkably well estimated by equation 3.1 (�gure E.14). The equation aptures the maximum680 27



over the Sahara, Southern South Ameria, Australia, entral Asia, Siberia and Northern Ameria. The681 isotope-derived spatial distribution of E/I orrelates well with the simulated distribution (r=0.91).682 Average errors are lower than 50% of the standard deviation at the global sale. This on�rms that683 o-variation between the di�erent variables at sub-annual time sales has a negligible e�et, so that684 the equation an be applied to annual-mean quantities. Generally, E/I estimates are best where E/I685 is relatively small.686 To test the e�et of the assumption that the soil water isotopi omposition is vertially onstant,687 we applied equation 3.1 using δ18Os − δ18Op from a simulation with soil pro�les ativated. This688 assumption is a signi�ant soure of unertainty on estimating E/I (table 4). We also analyzed the689 e�et of potential measurement errors in δ18Os, δ18Op, δ18Ov , temperature or relative humidity on690 the E/I reonstrution. Results are relatively insensitive to small errors in these measurements (table691 4). However, results are sensitive to the hoie of the n exponent in the alulation of the kineti692 frationation αK (table 4): knowing the n exponent with an auray of 0.07 (e.g. estimated n ranges693 from 0.63 to 0.70) is neessary to estimate E/I with an absolute preision of 2%.694 Finally, estimating E/I using equation 3.1 bears additional soures of unertainty in that we annot695 estimate using the ORCHIDEE model. These are related to all proesses that ORCHIDEE does not696 simulate. For example, ORCHIDEE underestimates or mis-represents the vertial isotopi gradients in697 soil water at some sites (setion 3.4.4, appendix C.2) and does not represent the e�et of water vapor698 di�usion in the soil (appendix C.2). These e�ets may disturb the proportionality between E/I and699
δ18Os − δ18Op in pratial appliations.700 To summarize, o-loated isotope measurements in preipitation, vapor and soil water ould provide701 an aurate onstrain on the proportion of bare soil evaporation to preipitation in�ltration.702 5 Conlusion and perspetives703 The ORCHIDEE LSM, in whih we have implemented water stable isotopes, reprodues the isotopi704 ompositions of the di�erent water pools of the land surfae reasonably well ompared to loal data705 from MIBA and Carbo-Europe and to global observations from the GNIP and GNIR networks. Despite706 28



the sale mismath between loal measurements and a GCM grid box, and despite the strong spatial707 heterogeneity in the land surfae, the apaity of ORCHIDEE to reprodue the seasonal and vertial708 variations in the soil isotope omposition suggests that even loal measurements an yield relevant709 information to evaluate LSMs at the large sale.710 We show that the simulated isotope soil pro�les are sensitive to in�ltration pathways and di�usion711 rates in the soil. The spatial and seasonal distribution of the isotope omposition of rivers is sensitive712 to the partitioning of total runo� into surfae runo� and drainage and to the residene time sales713 in underground reservoirs. The isotopi omposition of soil water is strongly tied to the fration of714 in�ltrated water that evaporates through the bare soil. These sensitivity tests suggest that isotope715 measurements, ombined with more onventional measurements, ould help evaluate the parameteriza-716 tion of in�ltration proesses, runo� parameterizations and the representation of surfae water budgets717 in LSMs.718 Evaluating an isotopi LSM requires o-loated observations of the isotope omposition in preipi-719 tation, vapor and soil at least at the monthly sale. However, suh o-loated measurements are still720 very sare, and most MIBA and Carbo-Europe sites are missing one of the omponents. Therefore,721 for LSM evaluation purpose, we advoate for the development of o-loated isotope measurements in722 the di�erent water pools at eah site, together with meteorologial variables. Our results suggest that723 isotope measurements are spatially relatively well representative and that even monthly values are724 already valuable to identify model bias or to estimate soil water budgets. Therefore, in the perspetive725 of LSM evaluation, if a ompromise should be made with sampling frequeny and spatial overage,726 we favor o-loated measurements of all the di�erent water pools at the monthly sale on a few sites727 representative of di�erent limati onditions, rather than multiplying sites where water pools are not728 all sampled. Additionally, at eah observation site, olleting di�erent soil samples a few meters apart729 is helpful to hek that they are spatial representative. In the future, development in laser tehnology730 ([Lee et al., 2007, Gupta et al., 2009℄) will allow the generalization of water vapor isotope monitoring731 at the di�erent sampling sites, whih has long been a very tedious ativity ([Angert et al., 2008℄).732 From the modeling point of view, kineti frationation proesses during bare soil evaporation are a733 29



soure of unertainty, and a better understanding and quanti�ation of this frationation is neessary734 ([Braud et al., 2009b, Nusbaumer, 2016℄). In addition, the auray of isotopi simulations by LSM735 is expeted to improve as the representation of hydrologial proesses improves. In partiular, given736 the importane of vertial water exhanges for the isotopi simulation, implementing water isotopes737 in a multi-layer hydrologial parameterization with su�ient vertial resolution ([Riley et al., 2002℄) is738 ruial. In the future, we plan to implement water isotopes in the latest version of ORCHIDEE, whih739 is multi-layer and more sophistiated ([de Rosnay et al., 2000, Zhu et al., 2015, Ryder et al., 2016℄).740 Finally, latest �ndings largely based on water isotopi measurements suggest that di�erent water pools741 o-exist within a soil olumn and that evaporation, transpiration, runo� and drainage tap from these742 di�erent pools ([Botter et al., 2011, Bowen, 2015, Evaristo et al., 2015℄). These e�ets are not yet rep-743 resented expliitly in global LSMs. These e�ets were mainly evidened based on isotope measurements,744 and in turn, their representation expeted to signi�antly impat isotopi simulations. Suh feedbaks745 between isotopi researh and hydrologial parameterization improvements should lead to LSM im-746 provements in the future. With this in mind, LSM inter-omparison projets would strongly bene�t747 from inluding water isotopes as part of their diagnostis, in the lines of iPILSP (isotope ounterpart of748 the Projet for Interomparison of Land-surfae Parameterization Shemes, [Henderson-Sellers, 2006℄).749
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A Lists of abbreviations and symbols750 Abbreviation MeaningLMDZ Laboratoire de Météorologie Dynamique-Zoom: the atmospheri modelORCHIDEE ORganizing Carbon and Hydrology In Dynami EosystEms: theland-surfae modelGCM General irulation modelLSM land-surfae modelLAI Leaf Area IndexMIBA Moisture In Biosphere and Atmosphere: network for water isotopes in soil,stem and leaf waterMIBA-US MIBA in the United StatesGNIP Global Network for Isotopes in PreipitationUSNIP United States Network for Isotopes in PreipitationGNIR Global Network for Isotopes in RiversECMWF European Center for Medium range Weather ForeastRMSE Root Mean Square ErroriPILPS isotope ounterpart of the Projet for Interomparison of Land-surfaeParameterization Shemes
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Symbol Meaning
δ18O Anomaly of H18

2 O/H2O ratio relatively to the mean oean water (setion2.1), in h

d Deuterium exess (setion 2.1)
δ18Os Soil water δ18Oin h

δ18Ostem Stem or twig water δ18Oin h

δ18Oleaf Leaf water δ18Oin h

δ18Oriver River or stream water δ18Oin h

dp Deuterium exess in preipitation
R H18

2 O/H2O ratio
Rs Isotopi ratio in the soil water
Rv Isotopi ratio in the near-surfae atmospheri water vapor
P preipitation �ux in mm/d
E bare soil evaporation �ux in mm/d
R surfae runo� �ux in mm/d
D drainage �ux in mm/d
I in�ltration �ux in mm/d: I = P −R

Rp, RE , RT , et... Isotopi ratio in the preipitation, bare soil evaporation, transpiration, et...
αeq, αK Equilibrium and kineti frationation oe�ients

h relative humidity
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B Representation of isotope frationation during evaporation753 from land surfae water pools754 B.1 Proesses for whih we neglet frationation755 Snow sublimation is assoiated with a slight frationation due to exhanges between snow and vapor756 in snow pores ([Sokratov and Golubev, 2009, Ekaykin et al., 2009, Noone et al., 2012℄). However, we757 32



assume that these e�ets are small enough to be negleted, as in other GCMs ([Ho�mann et al., 1998℄).758 Water uptake by roots has been shown to be a non-frationating proess ([Washburn and Smith, 1934,759 Barnes and Allison, 1988℄), but frationation at the leaf surfae during transpiration impats the om-760 position of transpired �uxes at sales shorter than daily ([Lai et al., 2006a, Lee et al., 2007℄). As the761 appliation of ORCHIDEE in the ontext of our study fouses mainly on time sales of a month or762 longer, we assume here that the transpiration and stem water have the omposition of soil water763 extrated by the roots.764 B.2 Evaporation from bare soils and anopy-interepted water765 We represent isotope frationation during evaporation of soil and anopy-interepted water using the766 model of [Craig and Gordon, 1965℄: at any time t, the isotopi omposition of evaporation RE is given767 by:768
RE(t) =

Rl(t) − αeq · h · Rv(t)

αK · αeq · (1 − h)
(B.1)where Rl and Rv are the isotopi ompositions of liquid water at the evaporative site and of water769 vapor respetively, h is the relative humidity normalized to surfae temperature, αeq is the isotopi770 frationation during liquid-vapor equilibrium ([Majoube, 1971b℄) and αK is the kineti frationation771 during water vapor di�usion. The kineti frationation during soil evaporation is still very unertain772 ([Braud et al., 2009b, Braud et al., 2009a℄). We use the very widespread formulation of [Stewart, 1975,773 Mathieu and Baria, 1996℄:774

αK =

(

D

Di

)n (B.2)where D and Di are the moleular di�usivities of light and heavy water vapor in air, respetively, and775
n is an exponent that depends on the �ow regime (0.5, 0.67 and 1 for turbulent, laminar and stagnant776 regimes respetively) but remains di�ult to estimate ([Braud et al., 2009b, Braud et al., 2009a℄). In777 this study, we take n = 0.67 for both evaporation of soil and anopy-interepted water, orresponding to778 moist onditions in the ase of soils ([Mathieu and Baria, 1996℄). However, we also tried 0.5 and 1.0 to779 estimate the range of unertainty related to this parameter. The isotopi omposition of preipitation780 33



is only slightly sensitive to the formulation of the kineti frationation: when n varies from 0.5 to 1,781 signi�ant hanges in δ18Op and dp are restrited to areas where bare soil overs more than 70%. Even782 in those ase, hanges in δ18Op and dp never exeed 2h and 7h respetively. The impat is slightly783 stronger on soils. Varying n from 0.5 to 1 leads to δ18Os variations of 2h in o�ine simulations on the784 Bray site, of the order of the observed average di�erene between two samples olleted on the same785 day (2.2h). In oupled simulations, the impat on δ18Os and ds reahes 8h and 20h respetively on786 very arid regions suh as the Sahara.787 To alulate the temporal mean isotopi omposition of evaporation over the time step ∆t, RE ,788 we assume Rv and h are onstant throughout eah time step. On the other hand, we allow the isotopi789 ratio of liquid water to vary over the simulation time step ∆t following [Stewart, 1975℄. While assuming790 onstant Rl is a valid assumption for models with very short time steps ([Braud et al., 2005℄), it is not791 the ase in ORCHIDEE (∆t=30min). We then alulate RE as:792
RE =

Rl0 ·
(

1 − fβ+1
)

− γ · Rv · f ·
(

1 − fβ
)

1 − f
(B.3)where Rl0 is the initial isotopi ratio of liquid water, f is the remaining liquid fration in the water793 reservoir a�eted by isotopi enrihment, and β and γ are parameters de�ned by [Stewart, 1975℄:794

β =
1 − αeq · αK · (1 − h)

αeq · αK · (1 − h)and795
γ =

αeq · h
1 − αeq · αK · (1 − h)For anopy-interepted water, the water reservoir is su�iently small to assume that the water796 reservoir a�eted by isotopi enrihment is the total anopy-interepted water. For soil evaporation797 on the other hand, we assume that the depth of the water reservoir a�eted by isotopi enrihment798 equals the average distane traveled by water moleules in the soil:799
L =

√

KD · ∆t (B.4)34



where KD is the e�etive self-di�usivity of liquid water in the soil olumn. Negleting the disper-800 sion term, KD is given by ([Munnih et al., 1980, Barnes and Allison, 1983, Barnes and Allison, 1988,801 Melayah et al., 1996, Braud et al., 2005℄):802
KD = Dm · τ · θl (B.5)whereDm=2.5·10−9m2/s is the moleular liquid water self-di�usivity ([Mills, 1973, Harris and Woolf, 1980℄),803

τ is the soil tortuosity and θl is the volumetri soil water ontent. In the ontrol simulation, we assume804
θl · τ=0.1 leading to L =0.67 mm. This hoie is onsistent with a τ of 0.67 ([Braud et al., 2005℄) and805 an average θl of about 15%. At the Bray, measurements along pro�les show θl varying from about 5806 to 30%. Sine these values are di�ult to onstrain observationally and very variable spatially and807 temporally, sensitivity tests to θl ·τ are performed and desribed in setion 3.5.2. We neglet the vapor808 phase in the soil and assoiated frationation and di�usion proesses ([Melayah et al., 1996℄).809 B.3 Dew formation810 We assume frationation during dew and frost formation following a Rayleigh distillation of the vapor811 in the lowest 10hPa (~80m) of the atmosphere. Sine the atmospheri water vapor ondenses in small812 proportion during frost and dew, this hoie of the depth of atmosphere involved in the ondensation813 has almost no impat on the omposition of the dew and frost formed. Following ommon pra-814 tie, we use equilibrium frationation oe�ient from [Merlivat and Nief, 1967℄, [Majoube, 1971a℄ and815 [Majoube, 1971b℄ and the kineti frationation formation of [Jouzel and Merlivat, 1984℄ with λ=0.004,816 whose hoie has very little impat on the results.817 B.4 Leaf water evaporation818 B.4.1 Steady-state819 At isotopi steady state, the omposition of water transpired by the vegetation is equal to that of the820 soil water extrated by the roots. In default simulations, we assume that isotopi steady state for plant821 water is established at any time and we diagnose the omposition of the leaf water at the evaporation822 site, RSS

e , by inverting the Craig and Gordon equation ([Craig and Gordon, 1965℄):823 35



RSS
e = αeq · (αK · (1 − h) · Rs + h · Rv) (B.6)where Rs and Rv are the isotopi ratio in soil water and water vapor respetively, h is the relative824 humidity normalized to surfae temperature, αeq is the isotopi frationation during liquid-vapor equi-825 librium ([Majoube, 1971b℄) and αK is the kineti frationation during water vapor di�usion. We take826 the same kineti frationation formulation as for the soil evaporation (appendix B.2, [Stewart, 1975℄),827 with n = 0.67 ([Riley et al., 2002, Williams et al., 2004℄). Leaf water ompositions are signi�antly828 sensitive to parameter n, with variations of the order of 10h as n varies from 0.5 to 1. We assume829 that the leaf temperature used to alulate αeq is equal to the soil temperature, but results are very830 little sensitive to this assumption.831 B.4.2 Non-stationary and di�usive e�ets832 The isotopi omposition of leaf water has been the subjet of many observational and numerial model-833 ing studies ([Farquhar and Cernusak, 2005, Cuntz et al., 2007, Ogée et al., 2007, Wingate et al., 2010℄).834 Several studies have shown that the omposition of the leaves is a�eted by mixing with xylem wa-835 ter and by non-stationary e�ets ([Ogée et al., 2007, Cuntz et al., 2007, Dubbert et al., 2014℄). Non-836 steady state e�ets are also inorporated in ORCHIDEE following [Farquhar and Cernusak, 2005℄.837 The isotopi ratio in the leaf mesophyll RSS

L is the result of the mixing between leaf water at the838 evaporative site and xylem water (Pelet e�et):839
RSS

L = RSS
e · f + Rs(1 − f) (B.7)where f is a oe�ient dereasing as the Pelet e�et inreases:840

f =
1 − e−P

Pand P is the Pelet parameter ([Cuntz et al., 2007, Barnard et al., 2007℄):841
P =

E · Leff

W · Dm36



E is the transpiration rate per leaf area, Leff is the e�etive di�usion length and W is the leaf water842 ontent per leaf volume (assumed equal to 103kg/m3, order of magnitude in [Barnard et al., 2007℄).843 The Pelet number P an be tuned by hanging Leff , that depends on leaf geometry and drought844 intensity (e.g. 7 to 12 mm in [Cuntz et al., 2007℄, 50 to 150mm in [Barnard et al., 2007℄). We take845
Leff=8 mm to optimize our simulation on Hartheim (setion 3).846 For some simulations, we aount for the e�et of water storage in leaves (leading to some memory in847 the leaf water isotopi omposition) following [Dongmann et al., 1974℄). Assuming that W is onstant,848 we alulate the leaf lamina omposition RL as ([Farquhar and Cernusak, 2005℄):849

RL(t) = RL(t − dt) · e−dt/τ + RSS
L (t) ·

(

1 − e−dt/τ
) (B.8)where850

τ =
W · αK · αeq · f

gand g is the sum of the total (stomati and boundary layer) ondutanes. The isotopi omposition851 of transpiration is then alulated so as to onserve isotope mass.852 C Representation of the vertial distribution of soil water iso-853 topi omposition854 C.1 Priniple855 In ontrol simulations, we assume that the isotopi omposition of soil water is homogeneous vertially856 and equals the weighted average of the two soil layers. In addition, to test this assumption, we857 implemented a representation of the vertial distribution of the soil water isotopi omposition: the soil858 water is spread vertially between several layers. The �rst layer ontains a water height L =
√

KD · ∆t859 , where KD is the di�usivity of water moleules in water and ∆t is the time step of the simulation,860 and the other layers ontain a water height resol · L. The parameter resol an be tuned to �nd a861 ompromise between vertial resolution and omputational time. Layers are reated from the top to862 bottom until all layers are full with water exept the deepest one that ontains the remaining soil863 37



water. For example, with L =0.67 mm, up to 16 layers an thus be reated if the soil is saturated.864 Bare soil evaporation is extrated from the �rst layer. Transpiration is extrated from the di�erent865 layers following a root extration pro�le that re�ets the sensitivity of transpiration to soil moisture866 ([Rosnay and Polher, 1998℄). Drainage takes water from the deepest layer. In the ontrol simulation,867 rain and snow melt are added to the �rst layer (piston-like �ow). In a sensitivity test, that an also be868 homogeneously distributed in the di�erent layers, to rudely represent preferential pathways through869 fratures or pores in the soil.870 At eah time step, the soil water isotopi omposition in eah layer is re-alulated by taking into871 aount the soures and sinks for eah layer and ensuring that eah layer remains full exept the872 deepest one. Isotopi di�usion between adjaent layers is applied at eah time step (equation B.5).873 The water budget of the total soil remains exatly the same as without vertial disretization.874 C.2 Evaluation for an idealized ase875 The module representing vertial distribution of water isotopes in the soil is �rst evaluated for an876 idealized ase when it is not yet embedded into ORCHIDEE.877 First, we use a ase in whih the soil olumn evaporates at its top and is permanently re�lled at the878 bottom by a water with δ18O of -8h ([Braud et al., 2005℄). The soil remains saturated, and we fous879 on the steady state reahed after a few hundreds of days ([Braud et al., 2005℄). An analytial solution is880 available for this ase ([Zimmermann et al., 1967, Barnes and Allison, 1983℄). The analytial solution881 and a muh more sophistiated model of soil water isotopes (MuSICA, [Ogée et al., 2003℄) yield very882 similar results (�gure E.15a): the bottom of the soil is at -8h while the top of the soil is enrihed up883 to 15h. The soil module of ORCHIDEE is able to reprodue these results when the value of θl · τ884 is set to be very low (0.001) and when the vertial resolution is su�iently high (layers of 0.75 mm).885 Whatever the value for θl · τ , ORCHIDEE results beome less sensitive to the vertial disretization886 when layers are thinner than about 2 mm.887 Seond, we use a ase in whih the soil olumn, initially with a soil water of -8h, evaporates888 at its top until the soil water ontent is only 20% ([Mathieu and Baria, 1996, Braud et al., 2005℄).889 38



The atmosphere has a relative humidity of 20% and a vapor δ18O of -15h. The sophistiated models890 MuSICA and SiSPAT ([Braud et al., 2005℄) feature a typial evaporative enrihment pro�le, with δ18O891 inreasing from its initial value of -8h at the bottom to a maximum δ18O of 13h about 10 mm below892 the surfae (�gure E.15b). In the uppermost 10 mm, there is a slight depletion due to di�usion of893 water vapor into the soil olumn ([Barnes and Allison, 1983℄). ORCHIDEE is not able to reprodue894 this vertial pro�le. First, sine di�usion of water vapor in the soil is negleted, it is not able to895 simulate the depletion near the surfae. Seond, sine θl · τ is temporally and vertially onstant in896 ORCHIDEE, it is not able to adapt to the drying of the soil. In the sophistiated model, as the soil897 dries, the soil water ontent θl derease, thus inhibiting vertial mixing of soil water and favoring898 strong isotopi gradients. In ontrast in ORCHIDEE, θl · τ remains onstant at a value representative899 of a moister soil, thus favoring vertial mixing of soil water and leading to a nearly uniform enrihment900 with depth.901 To summarize, our representation of isotopi vertial pro�les in ORCHIDEE is probably most902 suited when soil moisture remains high and does not vary too strongly.903 D Calulation of isotopi foring from LMDZ outputs and nearby904 GNIP or USNIP stations905 When preipitation and water vapor isotopi observations are not available at a given site, we reate906 isotopi foring using isotopi measurements in the preipitation performed on nearby GNIP (Global907 Network for Isotopes in Preipitation, [Rozanski et al., 1993℄) or USNIP (United States Network for908 Isotopes in Preipitation, [Vahon et al., 2007℄) preipitation stations. To interpolate between the909 nearby stations, taking into aount spatial gradients and altitude e�ets, we use outputs from an910 LMDZ simulation.911 Let's assume there are n GNIP or USNIP stations around the site of interest (MIBA or Carbo-912 Europe). The isotopi omposition of preipitation at the site of interest and for a given month, δp,site,913 is alulated as:914 39



δp,site = δp,lmdz(s) + as · (zsite − zlmdz(s)) +

n
∑

i=1

ri · (δp,NIP (i) − δp,lmdz(i))where915
ri =

1/di
∑n

j=1
1/djand where di is the geographial distane between the site of interest and the GNIP or USNIP916 station, δp,lmdz(s) is the preipitation isotopi omposition simulated by LMDZ in the grid box on-917 taining the site s, δp,lmdz(i) is the preipitation isotopi omposition simulated by LMDZ in the grid918 box ontaining the GNIP or USNIP station, δp,NIP (i) is the preipitation isotopi omposition ob-919 served at the GNIP or USNIP station, zsite is the altitude of the site of interest, zlmdz(s) is the altitude920 of the LMDZ grid box ontaining the site of interest and as is the slope of the isotopi omposition921 as a funtion of altitude simulated by LMDZ in the grid boxes ontaining and surrounding the site of922 interest. The �rst term on the right hand side orresponds to the raw LMDZ output for the site of923 interest. The seond term allows us to orret for the altitude e�et. Sine LMDZ is run at a 2.5◦924 latitude ×3.75◦ longitude resolution, we annot expet the average grid box size to be representative of925 the loal altitude at the site. The third term allows us to orret for possible biases in LMDZ ompared926 to GNIP and USNIP observations. Table 3 lists the GNIP and USNIP stations used to onstrut the927 foring at eah site of interest.928 To alulate the isotopi omposition of the water vapor, we assume that although LMDZ might929 have biases for simulating the absolute values of preipitation and water vapor omposition, it sim-930 ulates properly the preipitation-vapor di�erene ([Risi et al., 2010b, Risi et al., 2010a℄). Therefore,931 the isotopi omposition of water vapor at the site of interest, δv,site, is alulated as:932

δv,site = δp,site + δv,lmdz(s) − δp,lmdz(s)where δv,lmdz(s) is the isotopi omposition of water vapor simulated by LMDZ in the grid box933 ontaining the site of interest.934 40



E A simple equation to relate the soil water isotopi omposi-935 tion to the surfae soil water budget936 To explore how the isotopi omposition of soil water an help estimate terms of the soil water budget,937 we derive here a very simple theoretial framework.938 We assume that the water mass balane is:939
P = E + T + D + R (E.1)where P is the preipitation,R the surfae runo�, E is the bare soil evaporation, T the transpiration940 and D the drainage. Similarly, the isotopi mass balane is:941

P · Rp = E · RE + T · RT + D · RD + R · RR (E.2)where Rp, RE , RT , RD and RR are the isotopi ratios of inoming water at the soil surfae, bare942 soil evaporation, transpiration , drainage and surfae runo� respetively.943 We assume that the bare soil evaporation isotope ratio depends on that of the soil (Rs) following944 the [Craig and Gordon, 1965℄ relationship (equation B.1) and that the transpiration omposition is945 equal to that of the soil (RT = Rs), implying little vertial variations in soil water isotope ratios.946 We assume that the isotopi omposition of surfae runo� is that of the inoming water (RR = Rp)947 and that the isotopi omposition of drainage is that of the soil water (RD = Rs). In doing so, we948 neglet again vertial isotope variations in the soil and the temporal o-variation between Rs, D and949
T . Combining equations for the mass balane of water (equation E.2) and of water isotopes (equation950 E.1) then yields:951

Rp = E/I · RE + (1 − E/I) · Rs (E.3)where I = P −R represents the inoming water that in�ltrates into the soil. E/I represents the952 proportion of the in�ltrated water whih is evaporated at the soil surfae.953 41



The omposition of the bare soil evaporation �ux, RE , is a funtion of Rs following the [Craig and Gordon, 1965℄954 formulation (equation B.1). Replaing RE by its funtion of Rs in equation E.3 allows us to dedue955
E/I:956

E/I =
αeq · αK · (1 − h) · (Rp − Rs)

Rs · (1 − αeq · αK · (1 − h)) − αeq · h · Rv
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