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[1] The Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) [onboard
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
platform] and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument
(onboard the AQUA platform) will provide simultaneous measurements as part of the
‘‘AQUA-train,’’ thus offering a unique opportunity to improve our knowledge on aerosol
properties and their spatial distribution. Here we investigate to which extent both the
vertical distribution of the aerosol extinction coefficient and the aerosol bimodal size
distribution can be retrieved from a synergetic use of the vertically-resolved lidar signal
and the spectral radiance measurements. To this effect, a variational retrieval scheme
based on a simplified radiative transfer model was developed. The extinction-coefficient
profile for fine and coarse-mode aerosols was retrieved from synthetic observations of
the profile of the attenuated backscatter lidar signal at two wavelengths and radiances at
six wavelengths. Our method aims at minimizing a cost function which measures the
departure of the solution to the observations. The adjoint method was applied to find the
gradient of the cost function with respect to the input parameters. The retrieval scheme
was tested under a realistic noise level and different microphysical perturbations. The
retrieval of extinction-coefficient profiles, for fine and coarse particles, is successful if
there is a predominance of fine particles. If coarse particles dominate over fine ones, the
scheme retrieves the profile of the total extinction coefficient with a higher confidence
than that of the fine mode. When perturbations on the aerosol microphysical properties are
introduced, thus simulating a more challenging case with incomplete information of the
aerosol model present in the atmosphere, the scheme shows a very good performance in
terms of total extinction-coefficient retrieval but less success for individual modes. It
retrieves the modal radii for both modes simultaneously but can not retrieve at the
same time the refractive index and true-mode radii for both modes. Results also reveal that
there is some prospect for improvement in the quality of the retrieval by either increasing
the size of the predefined set of aerosol models or by including other sources of
independent information such as Polarization and Directionality of Earth Reflectances
(POLDER)-like measurements.
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1. Introduction

[2] The modeling of present-day climate forcing by
aerosol has been mainly approached by means of chemical
transport models (CTMs) and general circulation models
(GCMs) [e.g., Collins et al., 2001; Reddy et al., 2005].
These models include a representation of aerosols aimed at

simulating the three-dimensional distribution of their phys-
ical and chemical properties such as concentration, size
distribution, chemical composition, and state of mixture.
However, it has been recently shown possible to estimate
the aerosol direct radiative forcing from satellite observa-
tions only [Bellouin et al., 2005; Kaufman et al., 2005; Yu et
al., 2006]. Such estimates are nevertheless accurate only for
clear-sky conditions. Estimates of all-sky aerosol direct-
radiative forcing, as well as the aerosol-indirect effects,
depend critically on the aerosol vertical distribution. This
is particularly the case for black carbon, which can perturb
the temperature profile and thus alter regional circulation
and the hydrological cycle [Ackerman et al., 2000; Menon
et al., 2002]. The relative importance of the aerosol fine and
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coarse modes also matters. Fine particles can reduce cloud-
droplet size, increase cloud reflectance, and reduce precip-
itation [Rosenfeld, 2000], whereas coarse particles can
counteract some of these effects by allowing precipitation
and by cleaning the atmosphere of fine particles [Rosenfeld
et al., 2002].
[3] When calculating the aerosol radiative impact, both

their vertical distribution and the split between fine and
coarse particles are therefore important factors. Both these
factors can now be addressed in a coherent manner thanks
to important progresses made in the clear-sky observation
of aerosols from space. Global daily satellite measurements
allow retrieving optical thickness and Angström exponent
(a signature of aerosol size) from polarized and directional
measurements [Deuzé et al., 2000, 2001]. Radiometric
measurements from the Moderate Resolution Imaging
Spectroradiometer (MODIS) permit to retrieve, among
other relevant parameters, aerosol optical thickness and
fine-mode fraction based on seven channels with wave-
lengths in the range from 0.47 to 2.13 mm [Remer et al.,
2005]. Measurements with light-detection and ranging
(lidar) systems have proven to deliver information on the
vertical distribution of aerosols [e.g., Stephens et al., 2001;
Müller et al., 2001; Chazette, 2003]. The Cloud and
Aerosol Lidar with Orthogonal Polarization (CALIOP)
instrument onboard the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO), launched in
April 2006, provides profiles of attenuated backscattering
coefficients of aerosol and clouds at 0.53 and 1.06 mm. It
flies in formation with the Aqua satellite with MODIS
onboard and the Polarization and Anisotropy of Reflectan-
ces for Atmospheric Sciences coupled with Observations
from a Lidar (PARASOL) satellite with a Polarization and
Directionality of Earth Reflectances (POLDER)-like instru-
ment onboard. All these instruments allow to observe the
same spot on ground with only a few minutes difference.
Simultaneous lidar and radiometric measurements will
generate data sets that can be used to combine information
on the vertical distribution of aerosols from CALIOP and
the detailed size information from MODIS and POLDER
[Kaufman et al., 2003; Anderson et al., 2005].
[4] Some exploratory studies on the inversion of aerosol

fine- and coarse-mode profiles from the synergy of lidar and
radiometric measurements have already been conducted
[Kaufman et al., 2003; Léon et al., 2003]. They showed
the ability to further improve the retrieval of aerosol
properties by the combination of active and passive meas-
urements using case studies with lidar measurements taken
from an aircraft during different field campaigns. Kaufman
et al. [2003] showed that the ambiguity in the inversion of
the lidar data at two wavelengths can be removed using the
MODIS spectral radiances as long as the solution lies within
a small set of predefined aerosol models. According to their
results, the inversion is robust with respect to noise in the
lidar signal but more sensitive to possible calibration errors,
although they also argue that the calibration error could be
corrected if the aerosol model is known.
[5] Our study explores lidar-radiometer retrievals and

revisits some of the conclusions of Kaufman et al. [2003]
using a variational approach where a cost function is
defined and minimized iteratively. The advantages of the
method are that it is mathematically rigorous, it takes full

account of observational and model errors, and it is easy to
include extra constraints and observations. Our method
bears some resemblance to that of Stephens et al. [2001],
who used a nonlinear optimal estimation algorithm to solve
the lidar equation [Marks and Rodgers, 1993]. Here we use
a one-dimensional variational (Var) technique and an ad-
joint to solve the lidar and radiometer equations. Adjoint
methods are powerful modeling tools that allow solving a
variety of problems in an efficient way. They are, for
instance, used in three-dimensional-Var or four-dimension-
al-Var data assimilation in order to determine efficiently the
optimal initial conditions and also in sensitivity studies to
examine the sensitivity of all input parameters with respect
to one output parameter [e.g., Janiskova and Morcrette,
2005]. Adjoint models allow the computation of the gradi-
ent of one output parameter with respect to all input
parameters through one single integration, in contrast to
the more standard approach of repeatedly integrating the
direct model to obtain the sensitivity of all output param-
eters to perturbations in the input parameters [Le Dimet and
Talagrand, 1986]. It is our expectation that our method will
then feed into variational-data assimilation of aerosol infor-
mation in three-dimensional atmospheric models.
[6] In this study, we retrieve the extinction-coefficient

profile and average size distribution of the fine- and coarse-
aerosol modes from synthetic lidar and radiometric measure-
ments. We explore the quality of the solution under different
conditions of retrieval. The paper is organized as follows: the
inverse problem is presented together with the retrieval
scheme in section 2, followed by the presentation of the
methodology of our experiments in section 2.5. We present
the results in section 3 and the conclusions in section 4.

2. Methodology

[7] The retrieval mechanism is described in detail in this
section and is presented schematically in Figure 1. It
includes the simplified radiative transfer model described
in section 2.2, the calculation of the cost function and its
gradient (section 2.1) through the adjoint model (section 2.2),
and an optimization routine (section 2.1) that allows the
minimization of the cost function. The optimization of the
aerosol extinction coefficient and aerosol model is done
sequentially rather than simultaneously, with the former
being done with a variational approach and the latter in a
discrete manner (section 2.5). The retrieval of the aerosol
extinction coefficient is repeatedly performed for a set of
predefined aerosol models; we retain as solution(s) the
retrieval with the smallest residual cost function(s). The
predefined aerosol models are presented in section 2.3.

2.1. Variational Retrieval

[8] The goal of variational retrieval is to seek an optimal
balance between the observations and a priori information.
The departure of a potential solution x to a given observa-
tion vector, yo, and to an a priori, xb, is expressed by a scalar
function, namely the cost function, and defined as follows:

J xð Þ ¼ 1

2
x� xb
� �T

B�1 x� xb
� �

þ 1

2
yo �H x½ �ð ÞTR�1 yo �H x½ �ð Þ

ð1Þ
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where H is the observation operator, R is the error
covariance matrix of the observation vector, and B is the
error covariance matrix of the a priori xb.
[9] At each iteration, computations of the cost function

and its gradient are conducted and the model variable x can
be iteratively computed as:

xn ¼ xn�1 þ arJ xn�1
� �

ð2Þ

where rJ represents the gradient of the cost function, and a
is the step length of each iteration. We use the adjoint
method to compute efficiently the gradient of the cost
function. To minimize the cost function, we use a quasi-
Newton limited memory algorithm for bound constrained
optimization called L-BFGS-B [Byrd et al., 1994]. We only
bounded the solution by defining a lower bound of zero for
the entire vector x, defined below. The minimization stops
as soon as at least one of the two stopping criteria stipulated
in the minimization code is met. The first criterion requires
the reduction of the cost function to be smaller than a
threshold. The second criterion requires the module of the
projection of the gradient to be smaller than a defined value.
Since computing time is not an issue in our case, we can

afford to demand high accuracy in the solution. We
therefore set the first stopping criteria to a reduction in the
cost function to be smaller than 10 times the precision of the
machine. We demand as second stopping criteria the slope
of the projected gradient to be smaller than 103 in every
direction.
[10] If H is the linearized version of H and HT is the

adjoint of the H operator, described in the next section, the
gradient of the cost function can be written as:

rJ xð Þ ¼ B�1 x� xb
� �

þHTR�1 H xð Þ � yoð Þ ð3Þ

2.2. Simplified Model and its Adjoint

[11] In this study, the direct model H corresponds to a
simplified radiative transfer model that computes radiances
at six wavelengths and simulates the lidar signal at two
wavelengths. Two aerosol modes are considered in these
computations, namely, the fine and coarse modes. Hereafter,
variables corresponding to the accumulation mode will be
indicated by an ‘‘f’’ as subscript whereas the coarse mode
will be designated by a ‘‘c’’ as subscript. We consider a
simplified atmosphere characterized by aerosol scattering

Figure 1. Schematic representation of retrieval scheme. Synthetic observations are generated from one
pair of aerosol models of fine mode (i) and coarse mode ( j). Noise is added randomly to these synthetic
observations and a 25-member ensemble of synthetic observations is created. For each of these members,
a retrieval is conducted for each possible pair of fine (k, k = 1–4) and coarse modes (l, l = 1–5). We retain
the retrievals with the three smallest (exp 1) or the smallest (exp 2) cost functions.
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and absorption only. We consequently ignore gas absorp-
tion, Rayleigh scattering, and surface reflectance. We also
neglect the effects of multiple scattering and assume single
scattering both for the lidar and radiance calculations. With
these simplifications, the lidar signal is simulated as:

LS z;lð Þ ¼ CLS bf lð Þwf lð Þsf z;lð Þ½
þ bc lð Þwc lð Þsc z;lð Þ�
	 exp �2

R TOA

z
sf z0;lð Þ þ sc z0;lð Þ½ �dz0

� � ð4Þ

where w(l), b(l), and s(z, l) are the wavelength-dependent
single-scattering albedo, phase function at 180� (back-
scattering), and extinction coefficient (also height depen-
dent, z), respectively. CLS is a calibration constant set to
one. The radiance is simulated as:

L lð Þ ¼ CL wf lð Þbf ;F lð Þtf lð Þ½ þwc lð Þbc;F lð Þtc lð Þ�= 4pmð Þ
ð5Þ

where bF(l) is the phase function at the considered
scattering angle (120� here), m is the cosine of the scattering
angle, CL is a constant set to one, and t(l) is the aerosol
optical depth which relates to the aerosol extinction
coefficient through:

t lð Þ ¼
Z TOA

0

s z0;lð Þdz0 ð6Þ

We define an atmosphere of 10 levels with the aerosols
forming one cloud distributed in one or more atmospheric
layers. We consider the radius of each aerosol mode (Rgf

and Rgc) to be fixed throughout the atmospheric column.
Equation 4 is discretized on the 10 vertical levels zi as:

LS zi;lð Þ ¼ CLS bf lð Þwf lð Þsf zi;lð Þ½
þ bc lð Þwc lð Þsc zi;lð Þ�
	 exp �2

PTOA
j¼i sf zj;l

� �
þ sc zj;l

� �� 	
Dz

� � ð7Þ

where Dz is the layer thickness taken as 1 km throughout
the atmosphere from the surface.
[12] Optical properties such as the phase function (b) and

single-scattering albedo (w) are prescribed and calculated
offline using Mie theory. These calculations are conducted
assuming a lognormal size distribution and using a pre-
scribed modal radius (Rg), standard deviation (s0) and
refractive index for each aerosol mode.
[13] Our observation vector yo contains the synthetic lidar

signal profiles at two wavelengths (0.53 and 1.06 mm) for
our 10-layer atmosphere [equation (7)] and the synthetic
radiances at six wavelengths, namely, 0.55, 0.66, 0.86, 1.23,
1.65, and 2.13 mm [equation (5)]. The observation vector yo

is therefore of dimension 26. The control vector x is
composed of the extinction-coefficient profiles for the fine
(sf) and coarse (sc) aerosol modes for the same 10 layers at
a reference wavelength of 0.55 mm (i.e., x is of dimension
20). The extinction coefficient at other wavelengths can be
deduced from the aerosol model and the extinction coeffi-
cient at 0.55 mm. The modal radii for each mode (Rgf and
Rgc) are not retrieved directly and consequently not included
in the control vector.

[14] This study represents an exploratory work on how to
best exploit the synergy between MODIS radiances and
CALIOP lidar backscattering profiles. While this model is
highly simplified, it nevertheless fits the purpose of this
study, which is to investigate how much information on the
aerosol vertical profile and size distribution can be inferred
from combined lidar and radiometric satellite observations.
In light of these simplifications, the information content
retrieved from these academic simulations should be seen as
the maximum achievable from real observations.
[15] The adjoint model is derived using an automatic

differentiation algorithm called TAPENADE [Hascoët and
Pascual, 2004]. The advantage of the adjoint method is that
it allows an exact calculation of the Jacobian and is
numerically cheap, thus reducing the computational burden
compared to other methods that would calculate numerically
the gradient of the direct model from finite differences
[Le Dimet and Talagrand, 1986]. In this study, however,
computing time is not a limiting factor, and the use of
the adjoint technique obeys more to the interest in
studying the quality of the retrieval and its limitations,
with a view to apply this method in three-dimensional models
using a more complex and realistic radiative-transfer model.

2.3. Synthetic Observations

[16] In the present study, we test the retrieval scheme
using synthetic observations. These are generated by run-
ning our simplified model defined above with given vertical
profiles of the aerosol fine-mode and coarse-mode extinc-
tion coefficient, as well as prescribed size distribution and
refractive index for each aerosol mode. The defined profile
of extinction coefficient is taken within a realistic range.
This information will be considered as the ‘‘true’’ state of
the atmosphere to which the retrieval will be eventually
compared.
[17] Aerosol properties are taken from the MODIS aero-

sol models presented by Remer et al. [2005]. These models
consist of the refractive index, modal radius (Rg), and
standard deviation (s0) for five coarse-mode and four
fine-mode lognormal size distributions. These models are
expected to be representative of the actual variability in
aerosol size distribution and refractive index found in the
real world. Each mode represents a typical aerosol type,
from dry smoke to wet urban pollution, salt, and dust with
refractive indices assigned accordingly [Kaufman et al.,
2003]. They are used in the MODIS lookup tables for
aerosol retrieval over ocean. The properties of these fine
and coarse modes are presented in Table 1. For simplicity,
we do not consider any wavelength dependence for the
refractive index. This assumption, even though it influences
our results, should not induce any loss of generalities in our
final conclusions as it is applied consistently for generating
the synthetic observations and for running our retrievals.
[18] In order to reproduce the instrumental error, we have

introduced noise into the synthetic observations. A Gauss-
ian noise is added to synthetic observations to simulate the
measurement error of each instrument. For the radiance, the
standard deviation of the noise is taken as 2% of the true
radiance at 0.55, 0.66, and 0.86 mm and 3% at 1.23, 1.65,
and 2.13 mm. This error corresponds to the calibration
uncertainties of the radiometer [Miura et al., 2000]. The
error in the lidar signal is a combination of the instrument
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noise and a calibration noise. The calibration noise applies
uniformly over the vertical and is sometimes referred to as a
bias but can be assumed to vary randomly from one retrieval
to the next. Therefore in the context of one-dimensional-Var,
it can be treated as a random error but with vertical correla-
tion. The instrument noise is simulated with a standard
deviation of the noise of 10% at 0.532 mm and 20% at
1.064 mm. This corresponds to the expected noise from
CALIOP after averaging the signal to a resolution of 1 km
in the vertical and 25 km in the horizontal (J. Pelon, personal
communication, 2006). Calibration is performed in the
0.532-mm channel considering molecular scattering at high
altitudes (�40 km) and is transferred to the 1.064-mmchannel
using a reflective target such as a high-level cloud, which
introduces a strong correlation between the two calibration
errors. Because of a poor understanding of the spectral
correlation of the calibration error, we assume a standard
deviation of the calibration noise for both wavelengths of 5%
of the signal and a full correlation between the two lidar
wavelengths (J. Pelon, personal communication, 2006).
[19] Kaufman et al. [2003] based their sensitivity tests to

observational errors with errors of similar magnitude. They
considered a random noise of 10 and 20% for the 0.532- and
1.064-mm lidar wavelengths, respectively, and calibration
errors of 5 or 10%. While 5 and 10% calibration errors
introduced 20 and 40% error in the optical thickness, they
argued that the random noise in the observations did not
systematically affect the retrieval. It should be noted though
that in contrast to the variational method presented here
their method would not treat the different sources of errors
consistently. In contrast, we present in this paper a more
systematic analysis of the impact of observational errors on
the retrieval.
[20] For each experimental setup (described below), we

consider an ensemble of 25 realizations of synthetic obser-
vations perturbed with noise. We only report the mean and
standard deviation of the retrieved profiles for each of these
ensembles. Sensitivity tests (not discussed here) with up to
150 realizations instead of 25 have shown that 25 members
in the ensemble were sufficient.

2.4. Error Covariance Matrices

[21] The error covariance matrix for the observations, R,
usually combines the instrumental and the model errors.
However, since we use synthetic observations which are
generated using the same model as used in the inversion, the
only model errors would be of numerical nature, and these
are expected to be negligible as compared to the instrumen-
tal errors. The diagonal terms for the lidar signal correspond
to the combination of the instrument and calibration errors
described in the previous section. The nondiagonal terms
represent the vertical and spectral correlations in the cali-
bration error of the lidar signal. The diagonal terms for the
radiance terms correspond to 2% of the true radiance at the
three wavelengths between 0.55 and 0.86 mm and 3% for
the remaining three wavelengths. We assume the radiance-
measurement errors to be uncorrelated with each other. We
also assume the radiance and lidar-signal errors to be
uncorrelated to each other. In summary, the R matrix can
be expressed as

R ¼

R11
lid R

ji
lid 0 	 	 	 0

. .
. ..

. ..
.

R
ij
lid R2020

lid 0 	 	 	 0

0 	 	 	 0 R1
rad 0 0

..

. ..
.

0 . .
.

0

0 	 	 	 0 0 	 	 	 R6
rad

0
BBBBBBBB@

1
CCCCCCCCA

ð8Þ

where Rlid
ij = (dij nl2 + cl2) LSi LSj; both superindex i and j

span the vertical and spectral ranges for the lidar signal, dij

is 1 if i = j and 0 otherwise, nl and cl are the percentage
magnitude of the random and calibration errors, respec-
tively, as previously defined in section 2.3.
[22] Since we have limited and unreliable knowledge on

the a priori information, we neglect the a priori term from
the cost function [equation (1)] and define it solely as the
observation term. Therefore there is no need to define an
error covariance matrix for the background.

Table 1. Aerosol Models for the Aerosol Fine and Coarse Modesa

Refractive Index Rg s0 Reff Comments

Fine Mode 1 1.45(1.40)–
0.0035(0.0070)i

0.07 0.4 0.10 Small fine

2 1.45(1.40)–
0.0035(0.0070)i

0.06 0.6 0.15 Intermediate fine

3 1.40(1.45)–
0.0020(0.0035)i

0.08 0.6 0.20 Wet large fine

4 1.40(1.45)–
0.0020(0.0035)i

0.1 0.6 0.25 Wetter large fine

Coarse Mode 1 1.45(1.49)–
0.0035(0.0035)i

0.4 0.6 0.94 Wet sea salt type

2 1.45(1.49)–
0.0035(0.0035)i

0.6 0.6 1.48 Wet sea salt type

3 1.45(1.49)–
0.0035(0.0035)i

0.8 0.6 1.98 Wet sea salt type

4 1.53(1.49)–
0.0010(0.0020)i

0.6 0.6 1.48 Dust-like type

5 1.53(1.49)–
0.0010(0.0020)i

0.5 0.8 2.50 Dust-like type

aRg, s0, and Reff are, respectively, the median radius (in mm), standard
deviation of the lognormal size distribution, and the effective radius (mm).
The perturbed values of refractive index for experiments 2 and 3 are given
in parentheses. The aerosol models are from Remer et al. [2005].

Table 2. Percentage of Successful Retrievals for Each Possible

Combination of Fine and Coarse Modes Used to Generate the

Observations in Experiment 1a

Minima

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

Fine
Mode

1 Min 1 92 64 96 80 72 72 48 88 60 64
Min 2 4 36 4 20 24 20 4 4 20 20
Min 3 4 0 0 0 4 0 8 0 8 4

2 Min 1 64 64 88 72 64 28 36 40 44 28
Min 2 20 28 8 20 32 20 16 12 16 28
Min 3 16 0 4 4 0 40 44 48 36 44

3 Min 1 44 20 28 36 36 24 24 4 16 0
Min 2 32 16 28 20 12 48 48 76 40 64
Min 3 4 32 16 12 8 16 12 12 20 24

4 Min 1 44 48 52 40 20 64 60 68 60 60
Min 2 40 28 24 16 36 4 16 16 28 8
Min 3 16 12 20 20 28 24 12 16 8 4

aSolutions with the three smallest residual cost functions are shown. As
an example, when the fine mode dominates in optical depth and the
synthetic observations are constructed using fine mode 1 and coarse mode
1, this particular combination is retrieved 92% of the times with the smallest
cost function, 4% of the times with the second smallest cost function, and
4% of the times with the third smallest cost function. Numbers in bold
correspond to cases presented in Figures 2 and 3.
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2.5. Retrieval Scheme

[23] We initialize the retrieval from a first-guess profile of
the extinction coefficient at 0.55 mm. Tests have shown that
there is no sensitivity of the results to the choice of the first
guess. The cost function and the corresponding gradient are
evaluated according to equations (1) and (3) described
above. We do not attempt to retrieve the aerosol model

directly in the variational retrieval. Consequently, the con-
trol vector does not include aerosol size and refractive
index. However, we follow Kaufman et al. [2003] and
indirectly retrieve the aerosol model from the preselected
set of aerosol models shown in Table 1. We do so by
splitting the retrieval in two successive steps. First, we run
the retrieval, for each member of the ensemble of noise-
perturbed synthetic observations, for each of the 20 possible

Figure 2. Profiles of the aerosol extinction coefficient for (a) the fine mode, (b) the coarse mode, and
(c) total extinction coefficient. Profiles of the lidar signal at (d) 0.532 mm and (e) 1.064 mm and (f) spectral
radiances. Each panel shows the first guess (black dashed/purple), the values treated as truth (gray/green), and the
retrievals (black continuous/blue). The plots are for exp 1, with synthetic observation generated with finemode 1
and coarse mode 3 and the aerosol load of the fine mode larger than that of the coarse mode. The error bars for
the retrievals show the standard deviation around themean for the 25member retrievals. See color version of this
figures in the HTML.
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Figure 3. Same as Figure 2 but for experiment 1 with synthetic observations generated using fine mode
1 and coarse mode 1 and the fine mode aerosol load smaller than that of the coarse mode. See color
version of this figures in the HTML.

Table 3. Percentage of Successful Retrievals of the Coarse

Mode Aerosol Model When Only the Fine Mode is Perturbed

(Experiment 2a)a

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

Fine
Mode

1 0 0 72 0 100 8 100 100 96 80
2 0 0 100 0 0 100 100 4 60 0
3 0 0 100 0 0 100 100 4 60 0
4 0 0 100 0 0 100 96 0 60 0

aOnly retrievals with the smallest cost function are considered.

Table 4. Retrieved Fine Mode Refractive Index (Real Part) for

Experiment 2a Averaged From the 25 Members of the Ensemble of

Synthetic Observations Constructed From Each Combination of

Fine and Coarse Modesa

Perturbed
Refractive
Index

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

Fine
Mode

1 1.40 1.45 1.45 1.45 1.45 1.45 1.45 1.43 1.40 1.40 1.41
2 1.40 1.45 1.45 1.45 1.45 1.45 1.43 1.40 1.40 1.42 1.41
3 1.45 1.45 1.45 1.45 1.45 1.45 1.43 1.40 1.40 1.42 1.41
4 1.45 1.45 1.45 1.45 1.45 1.45 1.43 1.40 1.40 1.42 1.41

aUnderlined numbers correspond to cases where the true refractive index
was retrieved within ±0.01 of the perturbed value.
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combinations out of the four fine and five coarse-mode
aerosol models. Then, we retrieve the combination of
aerosol models and extinction-coefficient profiles by retain-
ing only those with the smallest residual cost function. By
limiting the solution of the aerosol models to the predefined
models, we decrease the dimension of the aerosol model
space and thus avoid complications associated with the
inclusion of explicit Mie calculations into the adjoint model.
[24] We conducted three sets of experiments. In the first

one (exp 1), we took the aerosol properties as presented in
Table 1, while in the second (exp 2) and third (exp 3) ones,
we perturbed the real and imaginary part of the refractive
index, respectively, when generating the observations. We
conducted these last two experiments in three different ways,
first perturbing only the fine-mode refractive index (exps 2a
and 3a), then only the coarse-mode refractive index (exps 2b
and 3b), and finally perturbing the refractive indices from
both modes (exps 2c and 3c) (Table 1). The rationale of these
experiments with microphysical perturbation was to inves-
tigate how the retrieval would behave if the observations
were built from an aerosol model which does not belong to
the set of aerosol models used for the retrievals.
[25] We can now summarize the experimental setup. In

each experiment, we considered in turn each possible pair of
unmodified (exp 1) or modified (exps 2 and 3) fine and coarse
modes and two different splits of an aerosol optical depth of
0.5 between the two aerosol modes (either the fine mode or
the coarse mode is taken as dominant with a 4:1 ratio in
optical thickness). For each of these 40 cases, an ensemble of
25 synthetic observations was generated using random noise,
as described above. For each resulting set of observations, we
conducted the retrieval for each one of the 20 possible pairs of
fine and coarse aerosol models. We retain the combination
with the smallest residual cost function.
[26] We present average results for the ensemble of 25

synthetic observations with noise. The final products of the
minimization therefore consist of the average retrieved
extinction-coefficient profiles and the average aerosol opti-
cal properties. In order to evaluate the quality of the
retrieval, we compare (1) the retrieved extinction-coefficient
profiles with the ‘‘true’’ state of the atmosphere, (2) the
simulated observations using the retrieved profiles with the
synthetic observations, and (3) the average retrieved aerosol
properties (size and refractive index) with those of the
‘‘true’’ aerosol models.

3. Results

3.1. Experiment 1

[27] The results for exp 1 are summarized in Table 2, and
two cases (out of 40) are illustrated in Figures 2 and 3. We

consider the true combination to be retrieved when the
percentage of successful retrieval in the first minimum for
each ensemble is larger than or equal to 50%. For the case
of an aerosol load with fine mode predominating over the
coarse mode, the true combination is retrieved whenever the
observations are generated with fine modes 1 and 2 and for
observations generated with fine mode 4 and coarse mode 3.
For the case of coarse-mode aerosols predominating over
fine-mode aerosols, the true combination is found whenever
the observations are generated with fine modes 1 and 4. It is
noteworthy that most of the time, the true combination is
found among the best three solutions. For both aerosol loads
analyzed, a large fraction of the time, the unsuccessful
retrievals are explained by a failure in retrieving the correct
fine-mode model.
[28] Under a predominance of fine aerosol, successful

retrieval of the aerosol models also implies the retrieval of
the true profiles of extinction coefficient (Figure 2). How-
ever, the conclusion does not necessarily hold when tf < tc
(see Figure 3). For all successful retrievals except for
observations generated with fine mode 1 and coarse mode
3, the average vertical profile of the extinction coefficient
for the fine mode does not reproduce on average the exact
shape of the true profile. This is in spite of the retrieval of
the true combination of aerosol models. Still, the vertical
distribution of the total extinction coefficient corresponding
to the retrieved profiles follows very closely the true vertical
distribution (Figure 3c). This means that under real con-
ditions and a predominant coarse mode, we would have
more confidence in retrieving the total aerosol extinction
coefficient than that of the fine mode. For observations
generated with fine mode 1 and coarse mode 3 and a
predominance of coarse aerosols, the scheme retrieves the
true profiles. Whether the fine or coarse mode predomi-
nates, the quality of the retrieval for most of the cases is
independent of the success of finding the true combination.
[29] Even though there is a good agreement between the

observations and the model output in both cases analyzed

Table 5. Retrieved Fine Mode Modal Radius (mm) for Experiment 2a Averaged From the 25 Members of the Ensemble of Synthetic

Observations Constructed From Each Combination of Fine and Coarse Modesa

Radius

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

Fine
Mode

1 0.070 0.070 0.070 0.070 0.070 0.070 0.072 0.084 0.1 0.099 0.095
2 0.06 0.070 0.070 0.070 0.070 0.070 0.08 0.1 0.1 0.088 0.093
3 0.08 0.070 0.070 0.070 0.070 0.070 0.084 0.1 0.099 0.088 0.093
4 0.1 0.070 0.071 0.070 0.070 0.070 0.081 0.1 0.1 0.086 0.092

aUnderlined numbers correspond to cases where the modal radius was retrieved within ±0.005 mm.

Table 6. Percentage of Successful Retrieval of the Fine Mode

Aerosol Model When Only the Coarse Mode is Perturbed

(Experiment 2b)a

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

Fine
Mode

1 100 100 100 100 100 100 96 0 92 52
2 0 0 0 0 0 0 16 0 4 4
3 0 0 0 0 0 0 24 24 0 0
4 8 8 0 4 0 0 84 80 4 4

aOnly retrievals with the smallest cost function are considered.
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with a small standard deviation (Figures 2d–2f and 3d–3f),
a large standard deviation is observed in the vertical profile
of the extinction coefficient (Figures 2a, 2b, 3a, and 3b).
The large sensitivity to the introduced noise is due to the
fact that several vertical distributions of the fine mode can
provide the same match to the lidar observations. This
appears to be caused by compensating effects between the
backscatter and attenuation terms because of the fine mode
in the lidar equation. The large standard deviation shown in
Figure 3a reflects the fact that certain solutions of the
ensemble attribute some of the coarse-mode extinction
coefficient to the fine mode. Finally, a smaller standard
deviation than the fine and coarse modes is observed for the
total extinction coefficient in both cases (Figures 2f and 3f).
This reflects that the scheme retrieves better individually the
total extinction coefficient than those of the fine and coarse
modes.
[30] Similar results are obtained when considering either

the fine-mode aerosol layer above the coarse-mode aerosol
layer or the opposite case (figures not shown). When
repeating exp 1 only with instrumental noise, the results
do not differ with the ones just presented (tables and figures
not shown). This reflects the ability of the retrieval scheme
to compensate for calibration error.

3.2. Experiment 2

[31] The results of exp 2 are presented in Tables 3 to 12,
while Figures 4 and 5 illustrate two cases from exp 2c. We
examine the retrieved nonperturbed aerosol model (exps 2a
and 2b) and the averaged retrieved value of the real part of
the refractive index and radius of the perturbed aerosol

model (exps 2a, 2b, and 2c). These values are constructed
as the average of the best solution from each of the 25
members of the ensemble of synthetic observations.
[32] When only the real part of the fine-mode refractive

index is perturbed (exp 2a), the correct coarse mode is
retrieved most of the time if it predominates over the fine
mode, whereas in the opposite case, the ‘‘true’’ coarse
mode is only found in some cases (Table 3). Because the
actual fine-mode aerosol model used to produce the syn-
thetic observations is not in the set of aerosol models used
for the retrieval, we cannot expect the scheme to ‘‘retrieve’’
simultaneously the fine-mode refractive index and modal
radius. We can see from Tables 4 and 5 that most of the
time either one of these two parameters can be retrieved
exactly or to a reasonable accuracy. There are, however,
cases (e.g., fine mode 2 for tf > tc) where neither the
refractive index nor the modal radius of the fine mode are
retrieved. The frequency of successful retrievals of the true
coarse mode keeps no relation with the average ‘‘retrieved’’
refractive index and mode radius of the fine mode.
[33] When only the real part of the coarse-mode refractive

index is perturbed (exp 2b), the percentage of successful
retrieval decreases for tf < tc with respect to exp 2a in terms
of finding the true unperturbed fine mode as the first
minimum (Table 6). The real fine mode is retrieved all the
time only for fine mode 1 and any given coarse mode when
tf > tc. When tf < tc, the true fine mode is found only for
isolated cases. The exact perturbed refractive index is never
retrieved, but several cases present solutions fairly close to
the perturbed value. Even though the true coarse mode is

Table 7. Retrieved Coarse Mode Refractive Index (Real Part) for

Experiment 2b Averaged From the 25 Members of the Ensemble of

Synthetic Observations Constructed From Each Combination of

Fine and Coarse Modesa

Perturbed
Refractive
Index

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

1.49 1.49

Fine
Mode

1 1.50 1.50 1.47 1.53 1.53 1.45 1.45 1.45 1.53 1.53
2 1.45 1.45 1.45 1.46 1.46 1.45 1.45 1.45 1.50 1.51
3 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.50 1.51
4 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.50 1.51

aUnderlined numbers correspond to cases where the true refractive index
was retrieved within ±0.02 of the perturbed value.

Table 8. Retrieved Coarse Mode Modal Radius (mm) for

Experiment 2b Averaged From the 25 Members of the Ensemble

of Synthetic Observations Constructed From Each Combination of

Fine and Coarse Modesa

Radius

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

0.4 0.6 0.8 0.6 0.5 0.4 0.6 0.8 0.6 0.5

Fine
Mode

1 0.63 0.63 0.72 0.51 0.5 0.58 0.6 0.8 0.6 0.53
2 0.8 0.8 0.8 0.8 0.8 0.4 0.6 0.61 0.6 0.6
3 0.8 0.8 0.8 0.8 0.8 0.4 0.6 0.61 0.6 0.6
4 0.8 0.8 0.8 0.8 0.8 0.4 0.59 0.6 0.6 0.6

aUnderlined numbers correspond to cases where the modal radius was
retrieved within ±0.05 mm.

Table 9. Retrieved Fine Mode Refractive Index (Real Part) for

Experiment 2c Averaged From the 25 Members of the Ensemble of

Synthetic Observations Constructed From Each Combination of

Fine and Coarse Modesa

Perturbed
Refractive
Index

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

Fine
Mode

1 1.40 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.43 1.45 1.44
2 1.40 1.45 1.45 1.45 1.45 1.45 1.45 1.42 1.40 1.45 1.45
3 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.42 1.40 1.45 1.45
4 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.41 1.40 1.44 1.45

aNumbers in bold correspond to cases presented in Figures 4 and 5.
Underlined numbers correspond to cases where the true refractive index
was retrieved within ±0.01 of the perturbed value.

Table 10. Retrieved Coarse Mode Refractive Index (Real Part) for

Experiment 2c Averaged From the 25 Members of the Ensemble of

Synthetic Observations Constructed From Each Combination of

Fine and Coarse Modesa

Perturbed
Refractive
Index

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

1.49 1.49

Fine
Mode

1 1.52 1.52 1.52 1.52 1.53 1.45 1.45 1.45 1.45 1.46
2 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45
3 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45
4 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45

aNumbers in bold correspond to cases presented in Figures 4 and 5.
Underlined numbers correspond to cases where the true refractive index
was retrieved within ±0.02 of the perturbed value.
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not within the predefined aerosol models, it is noteworthy
that for a few observation cases such as those created using
coarse mode 4 and fine modes 2 to 4, the scheme is able to
retrieve approximately the perturbed refractive index and
the modal radius simultaneously (Tables 7 and 8).
[34] Finally, in exp 2c, the true state of the atmosphere is

defined by a combination of two aerosol models, none of
which forms part of the set of aerosol models used for the
retrieval. The way we examine the performance of the
retrieval is through the average aerosol properties, as done
previously, and the comparison of the retrieved and inversed
profiles with the truth. Compared to the results of exp 2a,
the scheme shows an improvement in the retrieval of the
fine-mode radius (see Tables 5 and 11) and a slightly better
retrieval of the fine-mode refractive index (Tables 4 and 9).
Both improvements occur when tf < tc, while for the case
of tf > tc, no change is observed between exps 2a and 2c.
On the other hand, a decrease in the number of successful
retrievals of refractive index (Tables 7 and 10) of the coarse
mode is observed. Again, this is stronger when tf < tc. The
scheme is able to retrieve simultaneously the modal radii of
both aerosol modes for observations generated with fine
mode 1 and coarse mode 5 when tf > tc and fine mode 1,
coarse modes 2 to 4, and fine mode 3, coarse mode 2 when
tf < tc (see Tables 11 and 12). However, for none of the
possible set of generated observations, the retrieval scheme
is able to find the refractive index of the coarse mode,
neither when tf > tc nor when tf < tc. Furthermore, the
scheme is unable to simultaneously retrieve the refractive
index and modal radii of both modes. Figure 4 presents the
retrieved profiles of extinction coefficient for the fine
(Figure 4a) and coarse modes (Figure 4b) and total extinction
coefficient (Figure 4c) for the case of a predominance of fine-
mode aerosols. The lidar signal at 0.532 and 1.064 mm
(Figures 4d and 4e, respectively) and spectral radiances
(Figure 4f) corresponding to the retrieved profiles are also
presented. The retrieved profiles of both modes capture the
main features of the true vertical distribution. While the fine
mode underestimates the true extinction coefficient, the
coarse mode overestimates the true profile most of the time.
Yet the retrieved true profile remains within the variability of
the true retrieved coarse mode. Furthermore, the profile of
total extinction coefficient is also underestimated, because
of the underestimation in the fine mode. The difficulty in
retrieving the correct vertical profile is explained by the
error in simulating the spectral dependence of the radiance.
In most of the cases, the lidar signal at both wavelengths is
well simulated; however, the lidar signal at 0.532 mm

corresponding to the retrieved profiles simulates slightly
better the true profile than the one at 1.064 mm. In the rest
of the cases, the main differences with the true profile are
observed at 1.064 mm, which shows a higher tendency to
overestimate the true lidar signal. The opposite case of tf < tc
presents more difficulties in retrieving the true profile of
extinction coefficient for the fine mode but improves the
retrieval of the coarse mode (Figures 5a and 5b). It under-
estimates the fine mode and overestimates the coarse mode
but shows an improvement in the retrieval of the total
extinction-coefficient profile (Figure 5c). Errors in the re-
trieval are due to the misfit in simulating the true lidar signal
at both wavelengths (Figures 5d and 5e) and the spectral
dependance of the radiance (Figure 5f). The misfit to the
spectral radiance is significantly larger than the measurement
error, thus suggesting some inconsistency in our one-dimen-
sional-Var system. This is not surprising of course because of
the large perturbation in the aerosol mycrophysical properties.
There is therefore some prospect of improvement by
increasing the size of the predefined set of aerosol models.

3.3. Experiment 3

[35] In contrast to exp 2, when the imaginary part of the
refractive index is perturbed, a higher success rate in the
retrieval of the unperturbed aerosol mode is observed in exps
3a and 3b. In exp 3a, the true coarse mode is retrieved most of
the time when tf > tc and always when tf < tc. In exp 3b, the
scheme has a higher success rate (as compared with exp 3a) in
the retrieval of the correct fine mode when tf > tc but a lower
success rate when tf < tc. A higher retrieval rate of the modal
radius is also observed in both experiments. With respect to
exp 3c, the same conclusion as in exp 2c is valid, with the

Table 11. Retrieved Fine Mode Modal Radius (mm) for Experiment 2c Averaged From the 25 Members of the

Ensemble of Synthetic Observations Constructed From Each Combination of Fine and Coarse Modesa

Radius

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5

Fine
Mode

1 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
2 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.081 0.098 0.070 0.071
3 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.082 0.094 0.07 0.068
4 0.1 0.07 0.07 0.07 0.07 0.07 0.07 0.088 0.095 0.072 0.068

aNumbers in bold correspond to cases presented in Figures 4 and 5. Underlined numbers correspond to cases where the
modal radius was retrieved within ±0.005 mm.

Table 12. Retrieved Coarse Mode Modal Radius (mm) for

Experiment 2c Averaged From the 25 Members of the Ensemble

of Synthetic Observations Constructed From Each Combination of

Fine and Coarse Modesa

Radius

tf > tc
Coarse Mode

tf < tc
Coarse Mode

1 2 3 4 5 1 2 3 4 5
0.4 0.6 0.8 0.6 0.5 0.4 0.6 0.8 0.6 0.5

Fine
Mode

1 0.55 0.52 0.54 0.52 0.5 0.6 0.6 0.8 0.6 0.75
2 0.8 0.8 0.8 0.8 0.8 0.42 0.6 0.74 0.6 0.62
3 0.8 0.8 0.8 0.8 0.8 0.41 0.6 0.74 0.6 0.62
4 0.8 0.8 0.8 0.8 0.8 0.4 0.6 0.73 0.6 0.62

aNumbers in bold correspond to cases presented in Figures 4 and 5.
Underlined numbers correspond to cases where the modal radius was
retrieved within ±0.05 mm.
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only difference being the higher retrieval rate as compared to
exp 2c (tables and figures not shown).

4. Conclusions

[36] An exploratory study on variational retrieval was
conducted in order to investigate how to best exploit the
synergy between MODIS radiances and CALIPSO lidar-
attenuated backscattering profiles. A joint retrieval should
combine information on the vertical distribution of aerosols
from the lidar and information on size from the radiometer.
The retrieval scheme was applied to a simplified radiative

transfer model to retrieve the extinction-coefficient profile
of fine and coarse aerosol modes. Synthetic observations
were constructed from an aerosol model and vertical profile,
taken as the truth, in order to mimic the lidar and radio-
metric measurements. Noise was introduced into the syn-
thetic observations in order to reproduce the instrumental
and calibration errors. Experiments were conducted for a
constant aerosol load but varying from a predominant fine
mode to a predominant coarse mode. Different degrees of
perturbation to the real part of the refractive index were also
introduced in some of the experiments. For the ideal case

Figure 4. Same as Figure 2 but for exp 2c, i.e., perturbation of refractive index of the fine and coarse
modes and synthetic observation generated with fine mode 3 and coarse mode 5. See color version of this
figures in the HTML.
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when the true aerosol model belongs to our set of prede-
fined aerosol models used in the retrieval, the scheme shows
an equivalent success rate in retrieving the true aerosol
combination for both cases of aerosol loads analyzed. For
the case of fine mode predominating over the coarse mode,
the true profile is successfully retrieved for both modes and
for the total extinction coefficient. For the opposite case of
predominant coarse aerosol model, the scheme manages to
retrieve the true profile of extinction coefficient of the
coarse mode but is not able to retrieve exactly the true
profile of the fine mode even when the correct aerosol
models are found. It nevertheless retrieves accurately the
profile of the total extinction coefficient. Interestingly, the

success of the retrieval for most of the cases is independent
of finding the true combination. This reflects the fact that
retrieving the correct profile does not represent an indicator
of success in the retrieval of the true aerosol combination.
The standard deviation of the total extinction coefficient is
smaller than those of the fine and coarse modes. This
implies that the scheme retrieves better individually the total
extinction coefficient than the fine and coarse ones but
shows the same performance for the ensemble. Equivalent
results are observed when exp 1 is repeated without cali-
bration noise, revealing the ability of the scheme to com-
pensate for errors in the calibration. Similar conclusion can

Figure 5. Same as Figure 4 but for the case of the aerosol load of the coarse mode larger than that of the
fine mode. See color version of this figures in the HTML.
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be drawn with a vertical distribution of aerosols with the
fine-mode layer above the coarse-mode layer and vice versa.
[37] For the more challenging case when the true aerosol

model does not belong to our set of predefined aerosol
models used in the retrieval, the scheme has difficulties in
retrieving the true profile for fine and coarse modes. It
underestimates the extinction coefficient of the fine mode
and overestimates that of the coarse mode. However, when
the coarse mode predominates over the fine mode, the
scheme shows an improvement in the retrieval of the total
extinction coefficient. The errors in the retrieval when tf >
tc are mainly due to the misfit in reproducing the spectral
dependence of the radiance, whereas when tf < tc, the
differences between retrieved and true profile are also due to
the misfit in the lidar signal at both wavelengths. The
scheme is able to obtain the modal radii of both modes
simultaneously, but it is not able to obtain simultaneously
the perturbed aerosol refractive indices and the true mode
radii for both modes. All in all, the scheme shows a better
retrieval of aerosol properties, both refractive index and
modal radii, for a predominance of coarse-mode aerosols.
[38] When perturbing the imaginary part of the refractive

index, similar results to exp 2 are found. The main differ-
ence between these experiments is an increase in the
retrieval rate when compared to results obtained by perturb-
ing the real part of the refractive index.
[39] The MODIS wavelengths are more sensitive to the

coarse mode than to the fine mode [Kaufman et al., 2003].
This may explain the general improvement in the retrieval
when both modes are perturbed and tf < tc and the
successful retrieval of the fine-mode extinction-coefficient
profile when tf > tc.
[40] The results and conclusions of exp 2 rely strongly on

the definition of the aerosol models. These models serve the
purpose of reducing the solution space and avoid including
explicit Mie calculations in the retrieval scheme. We would
like to highlight the fact that in many cases with perturbed
microphysics, the residual error in the fit between the
observed and simulated radiance and lidar signal is larger
than the observational error. This means that synthetic
observations have not been exploited to their full potential,
and there is therefore prospect for achieving better retrievals
by including more aerosol models in our predefined set.
[41] While this model is highly simplified, it nevertheless

fits the purpose of this study, which is to investigate how
much information on the aerosol vertical profile and size
distribution can be inferred from combined lidar and radio-
metric satellite observations. In light of these simplifica-
tions, the retrieved information content from these academic
simulations should be seen as the maximum achievable for
the current set of predefined aerosol models. This simplified
model can also be used to test enhanced synergies between
instruments or the improvement that a third channel in a
spaceborne lidar would bring. Future work will consist to
adapt this retrieval scheme to accurate radiative transfer
models and apply it to actual aircraft and satellite data.
Further constraints to the retrieval could be achieved by
including other sources of observations such as POLDER
which could help to better characterize fine-mode aerosol
models [Herman et al., 2005] and thus improve the retrieval
for the case of predominance of coarse-mode aerosols.
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D. Tanré (2000), Estimate of the aerosol properties over ocean with
POLDER, J. Geophys. Res., 105, 15,329–15,346.
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