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Zonally-averaged transport equation

For a whatever scalar variable Q, the transport equation (with pres-
sure as vertical coordinate) can be written as:

∂Q

∂t
+ u

∂Q

∂x
+ v

∂Q

∂y
+ ω

∂Q

∂p
= S

where ω is the vertical velocity dp/dt, S is the source (or sink) for the
variable Q. This is the advection form of transport equation.

The continuity equation (multiplied by Q) gives:

Q

(

∂u

∂x
+
∂v

∂y
+
∂ω

∂p

)

= 0

The addition of the two equations gives:

∂Q

∂t
+

(

∂

∂x
(uQ) +

∂

∂y
(vQ) +

∂

∂p
(ωQ)

)

= S

The terms in parenthesis represent the divergence of flux for the variable
Q. This is the flux form of the transport equation.
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We can now apply the zonal average operator:

∂[Q]

∂t
+
∂[vQ]

∂y
+
∂[ωQ]

∂p
= [S]

With the relationship [vQ] = [v][Q] + [v⋆Q⋆], we obtain:

∂[Q]

∂t
+

∂

∂y
([v][Q]) +

∂

∂y
([v⋆Q⋆]) +

∂

∂p
([ω][Q]) +

∂

∂p
([ω⋆Q⋆]) = [S]

One can use the continuity equation

∂[v]

∂y
+
∂[ω]

∂p
= 0

to write the transport equation as:

∂[Q]

∂t
+

(

[v]
∂[Q]

∂y
+ [ω]

∂[Q]

∂p

)

+

(

∂

∂y
([v⋆Q⋆]) +

∂

∂p
([ω⋆Q⋆])

)

= [S]

Terms in the first parenthesis represent the advection of the mean circu-
lation. Terms in the second parenthesis represent the divergence of eddy
fluxes.
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Zonally-averaged meridional circulation equation

By using two basic equations, one is dynamic and another thermo-
dynamic, we can deduce the equation that governs the meridional circu-
lation:

du

dt
− fv +

∂Φ

∂x
= Fx

dT

dt
−
RT

Cpp
ω =

J

Cp

They can be changed to:

∂[u]

∂t
+

(

[v]
∂[u]

∂y
+ [ω]

∂[u]

∂p

)

+

(

∂

∂y
([v⋆u⋆]) +

∂

∂p
([ω⋆u⋆])

)

= f [v] + [Fx]

∂[T ]

∂t
+

(

[v]
∂[T ]

∂y
+ [ω]

∂[T ]

∂p

)

+

(

∂

∂y
([v⋆T ⋆]) +

∂

∂p
([ω⋆T ⋆])

)

=
RT

Cpp
[ω]+

[J ]

Cp
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We need the following relationships (through scale analysis) to sim-
plify furthermore the basic equations:

[ω]
∂[u]

∂p
≪ [v]

∂[u]

∂y

∂[ω⋆u⋆]

∂p
≪

∂[v⋆u⋆]

∂y

∂[u]

∂y
≪ f

Finally, we obtain:

∂[u]

∂t
= f [v] −

∂[v⋆u⋆]

∂y
+ [Fx]

In the same manner, the thermodynamic equation can be transformed
to:

∂[T ]

∂t
=

(

RT

Cpp
−
∂[T ]

∂p

)

[ω] −
∂[v⋆T ⋆]

∂y
+

[J ]

Cp
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Meridional overturning circulation stream function

We can observe that the mean meridional mass circulation is non-
divergent in the meriodional plane. Thus it can be represented in terms
of a meridional mass transport streamfunction ψ. [v] and [ω] can be
calculated by:

[v] ≡
∂ψ

∂p
; [ω] ≡ −

∂ψ

∂y

This satisfies the continuity equation.

∂[v]

∂y
+
∂[ω]

∂p
= 0

Pole NEq

ψ maximum ψ minimum
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How to calculate the stream function

Mass continuity for the meridional circulation is:

∂[v]

∂y
+
∂[ω]

∂p
= 0

where ω is the vertical wind dp/dt.
We can now introduce the stream function ψ to have the following

equations:

[v] =
g

2πa cosφ

∂[ψ]

∂p

and

[ω] =
−g

2πa2 cosφ

∂[ψ]

∂φ

The stream function can be calculated from the [v] field. It is enough to
integrate the first equation from the top of the atmosphere with ψ = 0
as boundary condition.
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Meridional overturning circulation of the atmosphere
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Meridional overturning circulation of the atmosphere



L. Li (LMD/CNRS): Three cells page 9

Thermal wind equation to establish a relationship between u
and T

At this point, we need to use the geostrophic approximation and
hydrostatic approximation

f [u] = −
∂[Φ]

∂y

∂[Φ]

∂p
=
R[T ]

p

to deduce the thermal wind equation

f
∂[u]

∂p
=
R

p

∂[T ]

∂y

If we take the time derivative of the thermal wind equation, we have:

f
∂

∂p

(

∂[u]

∂t

)

=
R

p

∂

∂y

(

∂[T ]

∂t

)



L. Li (LMD/CNRS): Three cells page 10

Equation governing ψ
Replace the terms ∂[u]/∂t and ∂[T ]/∂t by the above equations, we

obtain a diagnostic elliptique equation that governs the meridional cir-
culation:

f2
∂2ψ

∂p2
+ σ

∂2ψ

∂y2
= f

∂2[v⋆u⋆]

∂p∂y
−
R

p

∂2[v⋆T ⋆]

∂y2
− f

∂[Fx]

∂p
+

R

Cpp

∂[J ]

∂y
= S

where σ is the static stability

σ ≡
RT

CpP
−
∂[T ]

∂p



L. Li (LMD/CNRS): Three cells page 11

Eq

S < 0

Pole N

maximumψ

Schematic of the meridional stream function
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If the values of ψ on the boundaries are known, one can numerically
solve this elliptic equation. This equation is also useful to diagnose qual-
itatively the mean meridional circulation. Since ψ must vanish on the
boundaries, it can be represented by a double Fourier series in y and p.

ψ =
M
∑

m=1

N
∑

n=1

AmBn sin(mπ
p

δp
) sin(nπ

y

δy
)

Hence, the elliptic operator on the left is approximately proportional to
−ψ.

The four terms on the right, considered as sources, represent eddy
momentum flux, eddy heat flux, zonal drag force and diabatic heating.

ψ ∝ −f
∂2[v⋆u⋆]

∂p∂y
;
R

p

∂2[v⋆T ⋆]

∂y2
; f
∂[Fx]

∂p
;−

R

Cpp

∂[J ]

∂y
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ψ ∝ −f
∂2[v⋆u⋆]

∂p∂y
;
∂2[v⋆T ⋆]

∂y2
; f
∂[Fx]

∂p
;−

∂[J ]

∂y

heating cooling

Eq Pole N

du/dt = 0

du/dt < 0

Eq Pole N
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ψ ∝ −f
∂2[v⋆u⋆]

∂p∂y
;
∂2[v⋆T ⋆]

∂y2
; f
∂[Fx]

∂p
;−

∂[J ]

∂y

Eq

[v*T*] > 0

Pole N Eq

[v*u*][v*u*]
> 0 < 0

d/dz > 0

Pole N


