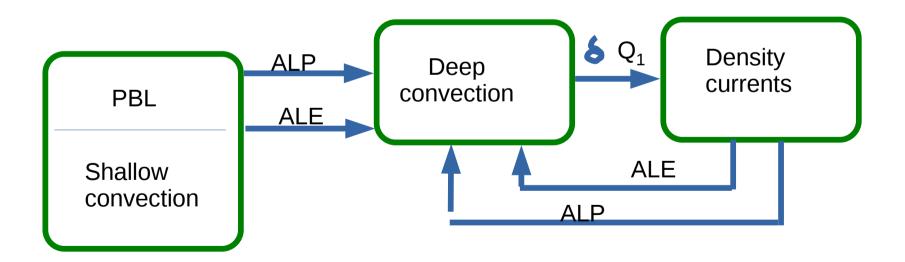
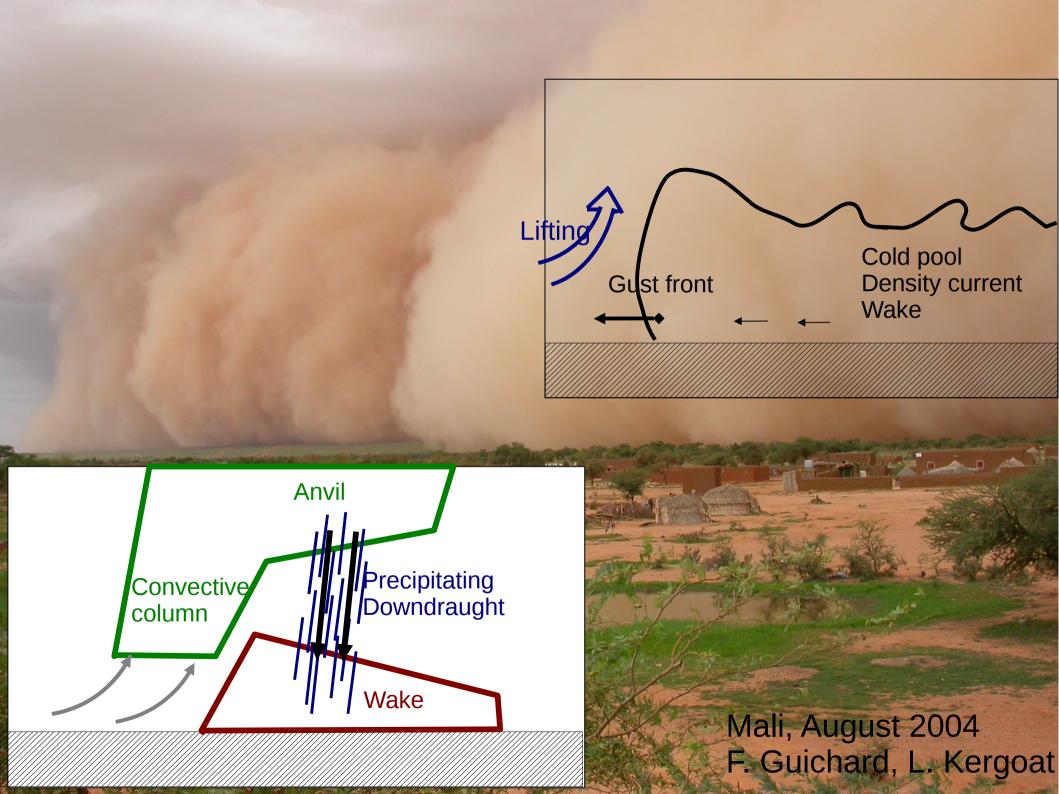
Développement d'un modèle de population de poches froides.


- Lamine Thiam (doctorant)
- Frederic Hourdin
- Catherine Rio
- Jean-Yves Grandpeix


1- The ALP-ALE system: coupling boundary layer thermals, deep convection and density currents. (LMD & CNRM)

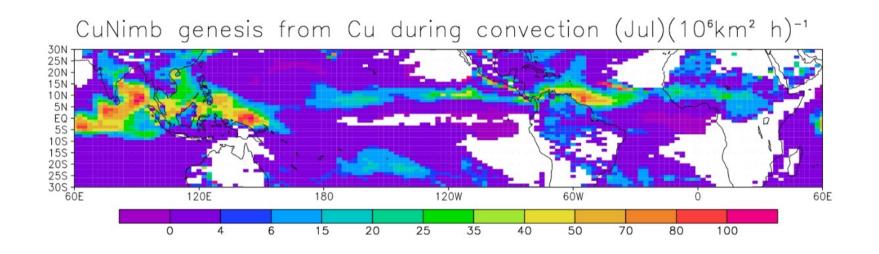
Deep convection trigger given by the Available Lifting Energy (ALE) :

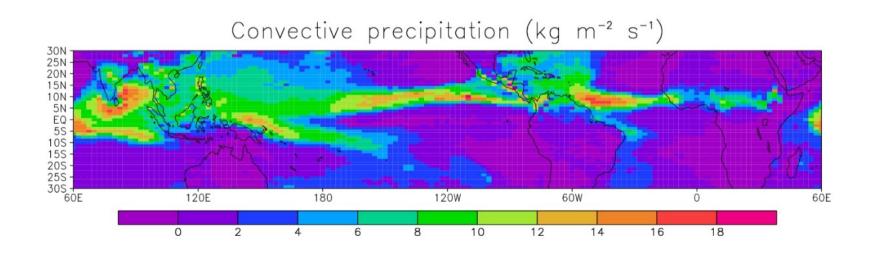
Closure given by the Available Lifting Power (ALP) :

$$M = ALP/(2 W_B^2 + |CIN|)$$
;
 $M = cloud base mass flux; W_B = updraught velocity at LFC$

Déclenchement stochastique :

Schéma du thermique \longrightarrow spectre de tailles de cumulus \longrightarrow densité de naissances de cumulonimbus (m⁻² s⁻¹).


Les CB sont supposés répartis statistiquement uniformément dans un domaine très grand devant la maille. Un tirage au hasard décide de la naissance de CB dans la maille.


Population de poches froides (wakes):

Principe: chaque nouveau CB crée une poche froide. Les poches s'étalent, se rencontrent (collision ou fusion), meurent. — population de poches très diverses. Le modèle de dynamique de population tente de représenter cette diversité par des poche identiques, en distinguant seulement deux catégories: les poches actives (accompagnées de convection profonde) et les poches inactives. Le point le plus arbitraire est la description du devenir des poches actives: quelle durée de vie, quelle couplage avec la convection, quelle dépendance au cisaillement?

4 - Cumulonimbus & cold pool genesis

CuNimb genesis rate diagnosed from an LMDZ AMIP simulation. The order of Magnitude looks reasonable: up to a hundred per million km2 and per hour over ocean; half a dozen over Sahel in July.

Modèle 1 : La fraction de poches actives est paramétrée par un rappel vers une fraction prescrite.

Modèle 2 : Une durée de vie τ_A est attribuée aux poches actives. L'effet des collision entre poches est explicité.

-A: number of active wakes per unit area

- D: number of wakes per unit area

-B: birth rate of Cumulonimbus (and of wakes)

 $-\tau_A$: lifetime of active wakes (to be parameterized)

 $-\tau_I$: lifetime of inactive wakes (= duration of collapse)

 $-\sigma$: fractionnal area covered by wakes $(\sigma = \pi r^2 D)$

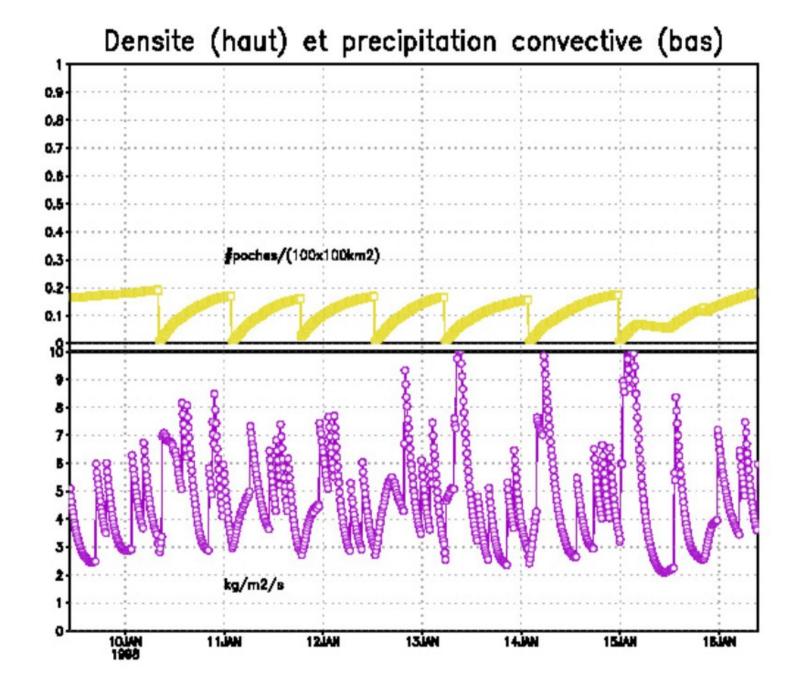
 $- f : \text{contact factor } (f = 4\pi r C_*)$

-
$$f$$
: contact factor $(f = 4\pi r C_*)$
- a_0 : wake area at birth
$$\begin{cases}
\partial_t D = B - \frac{D-A}{\tau_I} - fD^2 \\
\partial_t A = B - \frac{1}{\tau_A} A + f(D-A)^2 - fA^2
\end{cases}$$

$$(1)$$

$$\partial_t \sigma = Ba_0 - \frac{\pi r^2}{\tau_I} (D-A) + 2\pi r DC_* - f(D-A)^2 (2\pi r^2 - a_0)$$

$$\partial_t \sigma = Ba_0 - \frac{\pi r^2}{\tau_I} (D - A) + 2\pi r D C_* - f(D - A)^2 (2\pi r^2 - a_0)$$


Poches froides : mise au point et développement ; travail de thèse de Lamine Thiam

Analyse sur un cas d'équilibre radiatif-convectif sur océan, avec rayonnement imposé : comparaison avec une LES.

- Oscillations avec disparition des poches.
- Densité trop faible.
- Précipitation convective très bruitée.
- Nouvel outil de Fred pour analyser le comportement découplé du modèle de population.

Développements en cours ou à venir (Collaboration avec le Laplace) :

- Paramétrisation de τ_A
- Prise en compte de l'effet de non-recouvrement (ce qui pourra demander de prendre en compte un spectre de tailles).
- Mise en accord de Ale et Alp avec le mécanisme à deux populations (Alp due uniquement aux poches actives et aux collisions I^2 ?) (quid de Ale?).
- Last but not least : propagation de la densité de poches de maille en maille.

Développements passés, en cours ou à venir autour de la convection profonde

Développements susceptibles de répondre au problème de persistance de la convection profonde sur océan (Cf exposé de Catherine)

- Splitting : traitement différencié des couches limites turbulentes interne et externe aux poches froides. Tout est prèt sur océan. Il reste du travail sur continent)
- Représentation du rôle du cisaillement (A faire).

Amélioration de la microphysique : éjection des precipitations liquides des ascendances convectives Tout est prêt.

Problèmes persistants - Sensibilité au pas de temps de la convection. – La convection s'arrête, dans les cas 1D, lorsqu'il y a une forte convergence de masse.