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Key Points:6

• cold pool strength is stongly reduced when the splitting of the PBL is taken into7

account.8

• cold pool strength is closer to observations when the splitting of the PBL is taken9

into account.10

• simulated precipitation variability is improved.11
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Abstract12

bla bla bla13

1 Introduction14

2 Surface atmosphere coupling15

2.0.0.1 Notations : We consider fields function of position (x, y) and time t, where16

(x, y) belongs to a very large domain (large when compared to cold pool sizes and to grid17

cell size). Most often the t dependance will be omitted. For each field, say φ, φ∗ desig-18

nates the average values over the domain, φw the average value over the (w) region, and19

φx the average value over the (x) region. Fluxes are positive downward.20

At the surface, the boundary layer model is coupled with the subsurface model. The21

subsurface model may represent surface water of an ocean, soil at the surface of conti-22

nent, land ice, or sea ice. In all cases we assume that the subsurface model is constrained23

by mixed boundary conditions, that is by an affine relationship between the surface hu-24

midity q∗
s
and the surface moisture flux φ̂∗:25

φ̂∗ = µ̂ − λ̂q∗
s

(1)

The coupling between the two models is implemented in the following way: the bound-26

ary layer model computes the coefficients λ̂ and µ̂; from these boundary conditions the27

subsurface model determines the values of the variables φ̂∗ and q∗
s
; from these surface28

values the boundary layer scheme computes the humidity values in the whole troposphere.29

However it is not directly λ̂ and µ̂ that are used as boundary conditions for the sub-30

surface model but another set of equivalent parameters. An intermediate variable is in-31

troduced, namely the apparent atmosphere humidity qa, related to the surface flux by:32

1. a ”surface exchange” like equation:33

φ̂∗ = K̂a(qa − q∗
s
) (2)

2. the sensivity coefficients of the boundary layer model to the surface flux:34

qa = Âa + B̂aφ̂∗∆t (3)

Then the boundary conditions are given by the three coefficients K̂a, Âa and B̂a. The35

equivalence with the boundary condition (1) may be shown by eliminating qa between36

the two equations (2) and (3), which yields a relation of the form (1) with:37

µ̂ =
K̂aÂa

1− K̂aB̂a∆t

λ̂ =
K̂a

1− K̂aB̂a∆t

(4)

For a given pair (µ̂, λ̂) there exists an infinity of triplets (K̂a, Âa, B̂a) such that38

the relations (4) hold. K̂a may be chosen arbitrarily different from zero and Âa and B̂a
39

are given by:40

Âa =
µ̂

λ̂

B̂a =
1

∆t
[
1

K̂a
−

1

λ̂
]

(5)
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In the LMDZ GCM K̂a is chosen equal to the exchange coefficient between the first41

layer of the atmospheric model and the surface in which case: (i) the surface flux reads42

φ̂∗ = K̂(q∗
1
− q∗

s
) so that qa is identical to q∗

1
, and (ii) the coefficients Âa and B̂a are43

directly given by the resolution of the vertical diffusion equation in the atmosphere.44

It is worth emphasizing that the equality K̂a = K̂ (and its consequence qa =45

q∗
1
) is chosen in order to make it possible to separate the part of the subsurface bound-46

ary conditions due to surface processes (K̂a) and the part due to boundary layer pro-47

cesses (Âa and B̂a). When dealing with a split boundary layer, even though the same48

consideration of physical significance is accounted for, qa will be different from q∗
1
.49

3 Splitting50

For the sake of brevity, we present the full computations only for humidity. We shall51

outline the differences concerning enthalpy afterward.52

3.1 Basic equations53

The main assumptions of the model are:54

1. All fields are horizontally homogeneous within (w) and within (x).55

2. Model equations are linear during each time step: exchange coefficients are sup-56

posed constant (they are computed with the field values at the end of the previ-57

ous time step).58

3. Surface fluxes are given by:59

{

φ̂w = K̂w(qw
1

− qw
s
)

φ̂x = K̂x(qx
1

− qx
s
)

(6)

4. Surface moistures qw
s

and qx
s
differ by a prescribed amound ∆̂s:60

δqs = ∆̂s (7)

5. The boundary layer scheme provides, within each region (w) and (x), a linear re-61

lationship between humidity q1 at the first level and the surface moisture flux φ̂:62

{

qw
1

= (Âw + B̂wφ̂w∆t)

qx
1

= (Âx + B̂xφ̂x∆t)
(8)

In addition to these five equations, (6), (7) and (8), there are six equations relating for63

each of the field φ̂, qs and q1 the average value, the values in the regions (w) and (x),64

and the difference between the values in the regions (w) and (x). For instance for the65

moisture flux:66
{

φ̂∗ = σwφ̂
w + (1− σw)φ̂

x

δ̂φ = φ̂w
− φ̂x

(9)

and similarly for the surface moisture difference and for the humidity at the first level.67

To sum up, there are eleven linear equations for the twelve variables φ̂∗, φ̂w, φ̂x,68

δ̂φ, q∗
1
, qw

1
, qx

1
, δq1, q

∗

s
, qw

s
, qx

s
, δqs. from which it is possible (by elimination of all vari-69

ables but φ̂∗ and q∗
s
) to extract an affine relashionship between the average flux φ̂∗ and70

the average surface humidity q∗
s
:71

φ̂∗ = µ̂ − λ̂q∗
s

(10)

where µ̂ and λ̂ are coefficients which may be expressed in terms of the coefficients of the72

eleven linear relations. It is this relation which constitutes the mixed boundary condi-73

tion for the surface model.74
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The purpose of the following is to determine the coefficients µ̂ and λ̂. Moreover,75

in order to facilitate the coupling with surface models, we shall rewrite the mixed bound-76

ary conditions in the form of equations similar to equations (6) and (8): we shall first77

determine Âa and B̂a assumimg that K̂a is known. Then we shall choose K̂a in such a78

way that it is only function of surface conditions (and not of the boundary layer above).79

3.2 Solving80

3.2.1 Determining λ̂ and µ̂81

We introduce the coefficients K̂ ′:82























K̂ ′x =
K̂x

1− K̂xB̂x∆t

K̂ ′w =
K̂w

1− K̂wB̂w∆t

(11)

These coefficients are effective exchange coefficients taking into account the boundary83

layer feedbacks:84

φ̂w = K̂ ′w(Âw
− qw

s
)

φ̂x = K̂ ′x(Âx
− qx

s
)

(12)

Now applying the second product identity (A.4) to the fields K̂ ′, Â−qs and their prod-85

uct φ̂ yields:86

φ̂∗ = K̂ ′
∗

(Â∗
− q∗

s
) + σwσxδK̂ ′(δÂ− δqs) (13)

or, since δqs is prescribed (Eq. 7):87

φ̂∗ = K̂ ′
∗

Â∗ + σwσxδK̂ ′(δÂ− ∆̂s) − K̂ ′
∗

q∗
s

(14)

We recognize in this equation the mixed boundary condition we are seeking. Identifica-88

tion with equation (1) yields:89

µ̂ = K̂ ′
∗

Â∗ + σwσxδK̂ ′(δÂ− ∆̂s)

λ̂ = K̂ ′
∗

(15)

Now we want to write the boundary conditions in terms of the triplet (K̂a, Âa, B̂a).90

As explained in section (2), since K̂a is then a free parameter, we first determine Âa and91

B̂a for a given K̂a.92

3.2.2 Solving for Âa and B̂a for a given K̂a
93

The coefficients Âa and B̂a are given by equations (5) where λ̂ and µ̂ are given by94

equations (15):95

Âa = Â∗ + σwσx

δK̂ ′

K̂ ′
∗
(δÂ− ∆̂s)

B̂a =
1

∆t
[
1

K̂a
−

1

K̂ ′
∗
]

(16)

The problem of coupling a split boundary layer with a uniform subsurface model is now
solved. Whatever the non-zero coefficient K̂a the apparent atmosphere humidity reads

qa = Âa + B̂aφ̂∗∆t

A possible choice for K̂a would be K̂a = K̂ ′
∗

. Then B̂a = 0 and qa = Âa so that
the mixed boundary condition for the subsurface model reads:

φ̂∗ = K̂a(Âa
− q∗

s
)
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which means that the subsurface model behaves as if coupled to a fixed moisture atmo-96

sphere. This is a particularly simple formulation. However it has a drawback: the co-97

efficient K̂a is dependent on both the surface exchange processes and on the boundary98

layer processes. Moreover, obviously qa (which does not depend on φ̂∗) will be in gen-99

eral different from q∗
1
(which varies with φ̂∗), even if there is no cold pool. We shall now100

seek a more satisfactory formulation.101

3.2.3 Determining K̂a
102

Similarly to the non-split case we might choose K̂a = K̂∗. Although this will
be our final choice, it needs some more justification, since the weighting between K̂w and
K̂x could be very different from the one given by K̂∗. In order to guide our choice we
shall look at the variable q∗

1
and compare it to qa. The moisture field q1 is related to the

surface fluxes by equations (6):

{

φ̂w = K̂w(qw
1

− qw
s
)

φ̂x = K̂x(qx
1

− qx
s
)

Using the same technique as in section (3.2.1) we apply the second product identity (A.4)103

to the fields K̂, q1 − qs and their product φ̂. It yields:104

φ̂∗ = K̂∗(q∗
1
− q∗

s
) + σwσxδK̂(δq1 − ∆̂s) (17)

(It should be noted that this equation is not a mixed boundary condition for the sub-105

surface model since it involves four unknown variables: φ̂∗, q∗
1
, q∗

s
, and δq1).106

Elimination of φ̂∗ between equations (2) and (17) yields an expression for the dif-107

ference qa − q∗
1
:108

qa − q∗
1

= (1−
K̂a

K̂∗

)(qa − q∗
s
) + σwσx

δK̂

K̂∗

(δq1 − ∆̂s) (18)

This equation shows that when there are no cold pools (σw = 0 or σx = 0) then:

qa − q∗
1

= (1−
K̂a

K̂∗

)(qa − q∗
s
)

which implies that qa = q∗
1
if and only if K̂a = K̂∗. Consequently, in order to109

guarantee consistency with the no-cold pool case we choose K̂a = K̂∗.110

On the other hand, the equation for B̂a may be rewritten in the form of a sum in-
stead of a difference. First B̂a reads also B̂a = (1/∆t)(K̂ ′

∗

− K̂∗)/(K̂∗K̂ ′
∗

). Sec-
ond it is easy to show that:

K̂ ′
∗

− K̂∗ = ∆t [σwK̂wK̂ ′wB̂w + σxK̂xK̂ ′xB̂x]

Hence B̂a reads also:111

B̂a =
σwK̂wK̂ ′wB̂w + σxK̂xK̂ ′xB̂x

K̂∗K̂ ′
∗

(19)

Hence the final formulas:112







































K̂a = K̂∗

Âa = Â∗ + σwσx

δK̂ ′

K̂ ′
∗
(δÂ− ∆̂s)

B̂a =
σwK̂wK̂ ′wB̂w + σxK̂xK̂ ′xB̂x

K̂∗K̂ ′
∗

(20)
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Equations (20) express the boundary conditions for the subsurface model coupled113

to an equivalent horizontaly homogeneous atmosphere. It enables the subsurface model114

to determine the average surface flux φ̂∗. There remain to determine the repartition of115

this moisture flux among the two regions (w) and (x); otherwise stated, there remain to116

determine the difference δ̂φ.117

3.3 Back to the atmosphere118

In order to compute the flux difference δ̂φ we apply the third product identity (A.6)119

to the fields K̂ ′, Â− qs and their product φ̂:120

K̂ ′
∗

δ̂φ − δK̂ ′φ̂∗ = K̂ ′xK̂ ′w(δÂ − δqs) (21)

Hence the expression for δ̂φ:121

δ̂φ =
δK̂ ′

K̂ ′
∗
φ̂∗ + (δÂ − ∆̂s)

K̂ ′xK̂ ′w

K̂ ′
∗

(22)

3.4 Formulas for static energy122

The equations for the dry static energy h = CpT + gz are almost identical to123

those for humidity except for the surface variable: it is qs in the case of humidity while124

it is Ts = hs/Cp in the case of dry static energy. Hence the equations equivalent to125

(15) read:126

µ = K ′∗A∗ + σwσxδK
′(δA− Cp∆s)

λ = K ′∗

(23)

, the equations equivalent to (2) and (3) read:127







φ∗ = Ka(ha
− CpT

∗

s
)

ha = Aa + Baφ∗∆t
(24)

, and the equations equivalent to (20) read:128



































Ka = K∗

Aa = A∗ + σwσx

δK ′

K ′∗
(δA− Cp∆s)

Ba =
σwK

wK
′
wBw + σxK

xK
′
xBx

K∗K ′∗

(25)

Finally the ”return to atmosphere” formula reads:129

δφ =
δK ′

K ′∗
φ∗ + (δA − Cp∆s)

K
′
xK

′
w

K ′∗
(26)

4 1D simulations130

5 3D simulations131

6 Conclusion132

A: Elementary product identities133

Let a, b and p be three fields such that pw = awbw and px = axbx. This ap-134

pendix proves three identities relating the field a, b and their product p.135
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Since aw = a∗ + σxδa and ax = a∗ − σwδa (and similarly for b), the products136

pw and px read:137

pw = (a∗ + σxδa)(b
∗ + σxδb)

px = (a∗ − σwδa)(b
∗
− σwδb)

(A.1)

Hence:138

pw = a∗b∗ + σ2

x
δa δb+ σx(a

∗ δb+ b∗ δa)
px = a∗b∗ + σ2

w
δa δb− σw(a

∗ δb+ b∗ δa)
(A.2)

From which it is possible to derive expressions for δp (= pw−px) and p∗ (= σwp
w+139

σxp
x) yielding the first product identity:140

δp = a∗ δb+ b∗ δa+ (σx − σw)δa δb (A.3)

and the second product identity:141

p∗ = a∗b∗ + σwσxδa δb (A.4)

Another usefull identity is obtained by forming a∗ δp − p∗ δa:142

a∗ δp − p∗ δa = δb[(a∗)2 + (σx − σw)a
∗ δa − σxσw(δa)

2]
= δb(a∗ + σxδa)(a

∗
− σwδa)

(A.5)

Finally the third product identity reads:143

a∗ δp − p∗ δa = axaw δb (A.6)
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