

Le rayonnement, moteur du climat

Jean-Louis Dufresne jean-louis.dufresne@lmd.ipsl.fr

Laboratoire de Météorologie Dynamique et Institut Pierre-Simon Laplace

"MathsInFluids" , Lyon, 14 avril 2022

Le rayonnement, moteur du climat

- I. Bilan radiatif et température des planètes
- II. Echanges radiatifs dans les atmosphères
- III. Aspects spectraux: intéraction avec les gaz et effet de serre
- IV. Accroissement de CO_2 et H_2O à profile de température fixe
- V. Aspects géométriques: intéractions avec les nuages

Climate: radiation, rotation, circulation

Emergence of the physics of climate

J. Fourrier: *Mémoire sur les températures du globe terrestre et des espaces planétaires*, 1824

- > He consider the Earth like any other planet
- >The **energy balance equation** drives the temperature of all the planets
- The major heat transfers are
 1.Solar radiation 2.Infra-red radiation 3.Diffusion with the interior of Earth
- He formulates the principle of the greenhouse effect
- > He envisages that climate may change

Joseph Fourrier (1768-1830)

Equilibrium radiative temperature of Earth

Incoming solar radiation on a plan: F_0 =1364 W.m⁻² Incoming solar radiation on a sphere: F_s = $F_0/4$ = 341 W.m⁻²

1/3 of incoming solar radiation **is reflected**

Greenhouse effect

G=F_s-F_c

2/3 of incoming solar radiation is absorbed : $F_a = 240W.m^{-2}$

> Global mean surface temperature is 15°C

Emitted longwave radiation: $F_s = 390$ W.m⁻²

Emitted longwave radiation : $\sum_{n=2}^{\infty} - 240 \text{ M/m}^2$

 $F_e = 240$ W.m⁻² Same as the flux emitted by a

black body at $T_s = 255K (-18°C)$

Energy balance model (0D)

Infrared radiation

Equilibrium solution: $T_s = f(I_0, A, \epsilon_a, ...)$

- **I**_o: incoming solar radiation
- A: planetary albedo
- ε_a: planetary emissivity

Response to a perturbation:

$$\Delta T_{s} = \frac{\Delta N - \Delta Q}{\lambda}$$

∆T_s: temperature response

△Q: radiative forcing

△N: heat imbalance (ocean)

 $\boldsymbol{\lambda}$: climate feedback parameter

Single layer greenhouse model

- **I**₀: incoming solar radiation
- A: planetary albedo
- ε_a: planetary emissivity

Surface temperature:

$$\sigma T_s^4 = \frac{(1-A)I_0}{1-\epsilon_a/2}$$

The greenhouse effect

$$G = F_s - F_e = (1 - A)I_0 \left(\frac{1}{1 - \epsilon_a/2} - 1\right)$$

$$G=f(\epsilon_a)$$

From energy balance models to dynamical systems

Infrared radiation

Klaus Hasselmann (1931-) Nobel prize in Physics 2021

- Atmospheric circulation, water vapor, clouds, snow, surface ocean, sea ice, etc.
- Same + ocean circulation, CO2 continental biosphere, CH4, etc.
- Ice sheets, continental CO2
- Geological" CO2 (continental erosion, volcanism)

Time constant (years)

Paleo climate changes

The discovery (1840-1860)

J. de Charpentier

Blocs erratiques

L. Agassiz

The detailed description (1970-)

Ice volume change on paleo time scales

Le rayonnement, moteur du climat

- I. Bilan radiatif et température des planètes
- II. Echanges radiatifs dans les atmosphères
- III. Aspects spectraux: intéraction avec les gaz et effet de serreIV. Accroissement de CO₂ et H₂O à profile de température fixe
- V. Aspects géométriques: intéractions avec les nuages

Radiative transfer : basis

Electromagnetic spectrum : electromagnetic waves are characterized by their wavelength λ , frequency $v = c/\lambda$ or wavenumber $v = 1/\lambda$

We will mainly consider two spectral domains:

- Short wave (SW) radiation, or solar radiation $(0.4 4 \ \mu m)$
- Long wave (LW) radiation, or (thermal) infrared radiation (4-100 μ m)

Radiative transfer : basis

Stefan-Boltzmann law (integral of the Planck law over the whole spectrum and over one hemisphere). Power F lost by emission of radiation by a body of temperature T:

$$F = \epsilon \sigma T^4$$

With
$$\epsilon$$
 : emissivity (=1 black body)

 σ = 5,67 10⁻⁸ : Stefan-Boltzmann constant

F in W.m-2, T in K

 L_{v} : spectral radiance, at frequency v and in a solid angle Ω

 $B_{\nu}(T)$: black body emission, at frequency v and temperature (T) (Planck function)

 $\kappa_{a,v'}$ $\kappa_{s,v}$: absorption and scattering coefficient, at frequency v P(Ω, Ω'): phase function

The RT equation must be integrated over the entire space (Ω ,s) and over frequency (v)

$\kappa_{a,v}$: same coefficient for absorption and emission. Absorption and emission properties are equals

Radiative transfer equation : *no-scattering media*

S₀

$$\frac{dL_{v}(\Omega)}{ds} = \kappa_{a,v} \Big(B_{v}(T) - L_{v}(\Omega) \Big) + \kappa_{s,v} \Big(\int_{4\pi} L_{v}(\Omega') P(\Omega',\Omega) d\Omega' - L_{v}(\Omega) \Big)$$

Media with a black boundary in s_o :

Radiative transfer equation : *no-scattering media*

$$\frac{dL_{v}(\Omega)}{ds} = \kappa_{a,v} \Big(B_{v}(T) - L_{v}(\Omega) \Big) + \kappa_{s,v} \Big(\int_{4\pi} L_{v}(\Omega') P(\Omega',\Omega) d\Omega' - L_{v}(\Omega) \Big) \Big)$$

Medium with a black boundary in s_o :

$$L_{v}(s,\Omega) = B_{v}(T(s_{0}))e^{-\tau(s_{0},s)} + \int_{s_{0}}^{s} B_{v}(T(s'))\kappa_{a,v}e^{-\tau(s,s')}ds'$$

with:
$$\tau(s,s') = \int_{s}^{s'} \kappa_{a,v} ds'' = \tau$$
, optical thickness

$$L_{v}(s,\Omega) = B_{v}(T(s_{0}))\Gamma_{v}(s_{0},s) + \int_{s_{0}}^{s} B_{v}(T(s'))\frac{d\Gamma_{v}(s,s')}{ds}ds'$$

with: $\Gamma_{v}(s, s') = e^{-\tau_{v}(s, s')}$ transmissivity

Isotherm semi-infinite medium: $L_v(s, \Omega) = B_v(T_0) \equiv \text{black body emission}$

Semi infinite medium:

- If some absorption:
 - perfect absorbent
 - black body emission
- If some scattering:
 - perfect reflector
 - "white" reflection

all FEFT

Radiation in a stratified atmosphere

- Plan parallel approximation: horizontally infinite and homogeneous atmosphere
- It is common to separate the radiative flux into upward and downward flux

Radiation in a stratified atmosphere

Radiative transfer equation without scattering:

$$\frac{dL_{v}(\Omega)}{ds} = \kappa_{a,v} \big(B_{v}(T) - L_{v}(\Omega) \big)$$

Hydrostatic equilibrium: *dP*=-ρ*g dz*=-ρ*g*μ*ds* Massic extinction coef.

$$\kappa_{a,v} = k_{a,v} \rho$$

$$\frac{dL_{\nu}^{\uparrow}(\mu)}{dP} = -\frac{k_{a,\nu}}{g\mu} \left(B_{\nu}(T) - L_{\nu}(\mu) \right)$$

Transmission and optical thickness :

$$\Gamma_{\nu} = e^{-\tau_{\nu}} \qquad \tau_{\nu}(s_{1}, s_{2}) = \int_{s_{1}}^{s_{2}} \kappa_{a,\nu}(s) ds \qquad \tau_{\nu}(P_{1}, P_{2}, \mu) = \left| \int_{P_{1}}^{P_{2}} \frac{k_{a,\nu}(P)}{g\mu} dP \right| \qquad d\Gamma_{\nu} = -\Gamma_{\nu} \frac{k_{a,\nu}}{g\mu} d\tau_{\nu}$$

$$\frac{dL_{\nu}^{\star}(\mu)}{dP} = -\frac{\partial\Gamma_{\nu}(P, P, \mu)}{\partial P} (B_{\nu}(T) - L_{\nu}^{\star}(\mu)) \qquad \frac{dL_{\nu}^{\star}(\mu)}{dP} = -\frac{\partial\Gamma_{\nu}(P, P, \mu)}{\partial P} (B_{\nu}(T) - L_{\nu}^{\star}(\mu))$$

Flux:
$$F_{\nu}^{\uparrow}(P) = 2\pi \int_{0}^{1} L_{\nu}^{\uparrow}(P,\mu) d\mu$$

Radiation in a stratified atmosphere

$$L^{ullet}_{
u}(oldsymbol{P}$$
 , $\mu)$, $oldsymbol{F}^{ullet}_{
u}(oldsymbol{P})$

Radiance: $L_{\nu}^{\uparrow}(P,\mu) = B_{\nu}(T_{s})\Gamma_{\nu}(P_{s},P,\mu) - \int_{P_{s}}^{P} B_{\nu}(T(P')) \frac{\partial \Gamma_{\nu}(P,P',\mu)}{\partial P'} dP'$

Flux:
$$F_{\nu}^{\uparrow}(P) = \pi B_{\nu}(T_{s}) \mathring{\Gamma}_{\nu}(P_{s}, P) - \int_{Ps}^{P} \pi B_{\nu}(T(P')) \frac{\partial \mathring{\Gamma}_{\nu}(P, P')}{\partial P'} dP$$

With the slab transmittance: $\Gamma_{\nu}(P_1, P_2) = 2 \int_{0}^{1} \Gamma_{\nu}(P_1, P_2, \mu) \mu d\mu$

$$E_{3}(x): \text{Exponential integral} = 2\int_{0}^{1} e^{-\tau(P_{1},P_{2},0)/\mu} \mu d\mu = E_{3}(\tau(P_{1},P_{2},0))$$

Discretized two-stream scheme

Equations relating <u>diffuse</u> fluxes between levels take the form:

$$F_{i-0.5}^{+} = T_i F_{i+0.5}^{+} + R_i F_{i-0.5}^{-} + S_i^{+}$$

• Terms T, R and S given by Meador and Weaver (1980)

[R. Hogan lecture]

Le rayonnement, moteur du climat

- I. Bilan radiatif et température des planètes
- II. Echanges radiatifs dans les atmosphères
- III. Aspects spectraux: intéraction avec les gaz et effet de serre IV. Accroissement de CO_2 et H_2O à profile de température fixe
- V. Aspects géométriques: intéractions avec les nuages

Absorption by gases

Absorption by gases

- Line emission and absorption by transition between states of different energy
- In the infra-red: level of energy correspond to change in vibration and rotation of molecules
- Complex molecules are better absorbent
- Line broadening (collision (Lorentz), Doppler)

Line-by-line radiative transfer model

Spectrum of the radiation emitted by the Earth as measured by satellites

Spectral integration: k-distribution model

Spectral radiance:
$$L_{v}^{\uparrow}(P,\mu) = B_{v}(T_{s})\Gamma_{v}(P_{s},P,\mu) - \int_{P_{s}}^{P} B_{v}(T(P')) \frac{\partial \Gamma_{v}(P,P',\mu)}{\partial P'} dP'$$

 $\Gamma_{v}(P_{1},P_{2},\mu) = e^{-\tau_{v}(P_{1},P_{2},\mu)}$
 $\tau_{v}(P_{1},P_{2},\mu) = \left| \int_{P_{1}}^{P_{2}} \frac{k_{a,v}(P)}{g\mu} dP \right|$

If $k_{a,v}$ is constant: $\tau_v(P_1, P_2, \mu) = |\kappa_{a,v} \overline{g\mu}|$

Frequency integral over Δv :

$$\bar{\Gamma}_{\Delta\nu}(P_1, P_2, \mu) = \int_{\Delta\nu} e^{-\tau_{\nu}(P_1, P_2, \mu)} \frac{d\nu}{\Delta\nu} = \int_{\Delta\nu} e^{-k_{s,\nu} \frac{\Delta P}{g\mu}} \frac{d\nu}{\Delta\nu}$$

$$= \int_{0}^{\infty} e^{-k \frac{\Delta P}{g\mu}} f(k) dk \qquad f(k): \text{ probability dens. funct. of } k \qquad \int_{0}^{\infty} f(k) dk = 1$$

$$= \int_{0}^{1} e^{-k(h) \frac{\Delta P}{g\mu}} dh \qquad h(k): \text{ cumulative dens. funct. of } k \qquad h(k) = \int_{0}^{k} f(k) dk$$

$$\approx \sum_{i=1}^{N} e^{-k(h_i) \frac{\Delta P}{g\mu}} \Delta h_i$$

k-distribution model

[*Mlawer e.a.*,1997]

How do we integrate across the spectrum?

Planck function

Divide into bands

Planck function

The correlated k-distribution (CKD) method

Planck function

The correlated k-distribution (CKD) method

Planck function

Typical LW flux and heating rate profile

[*Mlawer e.a.*,1997]

LW heating rate profiles

(b) Heating rate profiles

[Jeevanjee & Fueglistaler, 2020]

Typical heating rate profile

[Peixoto, 1992]

The concept of emission height

different optical thicknesses of the atmosphere

[Dufresne et al., 2020]

Analogy between emission height and visibility distance

emission height $\lambda(\mu m)_7$ 2010 54 30 Z_e 20 (m_{10}) а Flux $000 \stackrel{-7}{\mathrm{cm}}$ F F_s 200 F_a (mWm 100 -0 500 1000 1500 2000 2500 $\nu ~(\mathrm{cm}^{-1})$

[Dufresne et al., 2020]

Spectrum of the radiation emitted by the Earth as measured by satellites

Atmospheric window

Water vapor channel

🚊 EUMETSAT

Brightness temperature: White: warm. Black: cold

Le rayonnement, moteur du climat

- I. Bilan radiatif et température des planètes
- II. Echanges radiatifs dans les atmosphères
- III. Aspects spectraux: intéraction avec les gaz et effet de serre
- IV. Accroissement de CO₂ et H₂O à profile de température fixe
- V. Aspects géométriques: intéractions avec les nuages

Change in net radiative flux in response to change in GHG concentration

	2xCO ₂		1.2xH ₂ O	
	LW		LW	
TOA	2.80		3.78	
200hPa	5.48		4.57	
Surf	1.64		11.52	

Net flux: positive downward

[Collins et al. 2006]

Change in net radiative flux in response to change in GHG concentration

	2xCO ₂		1.2xH ₂ O	
	LW	SW	LW	SW
TOA	2.80	0.12	3.78	0.75
200hPa	5.48	-0.77	4.57	0.51
Surf	1.64	-0.96	11.52	-5.87

Change in net flux (Wm⁻²), positive downward

[Collins et al. 2006]

Change in flux and emission height: 2xC0₂

Emission height

Change in emission height for a doubling of co₂ concentration

Change in radiative flux at the top of the atmosphere

[Dufresne et al. 2020]

Change in flux and emission height: 2xC0₂

[Collins et al. 2006]

Change in flux and emission height: $1.2xH_{2}0$

Change in heating rate profile $1.2 \times H_2O$

[Collins et al. 2006]

Greenhouse effect in a *stratified* atmosphere

solar radiation (SW)

F_{ir}-

a) dT/dz constrained

by convection

F_{ir} outgoing infrared (LW) radiation

at equilibrium

F_{ir}

temperature T

emission height altitude

Ze

The concentration of greenhouse gases is vertically uniform.

> Visible zone (photons emitted upwards reach the space)

Hidden zone (photons emitted upwards are absorbed and do not reach the space)

Greenhouse effect in a *stratified* atmosphere

Le rayonnement, moteur du climat

- I. Bilan radiatif et température des planètes
- II. Echanges radiatifs dans les atmosphères
- III. Aspects spectraux: intéraction avec les gaz et effet de serre
- **IV.** Accroissement de CO_2 et H_2O à profile de température fixe
- V. Aspects géométriques: intéractions avec les nuages

Clouds are the signature of the atmospheric circulation

Geometrical aspects: interactions with clouds

Spectral variation of the radiative properties of particles much less abrupt than for gases

Difficulties come from:

- Radiative properties of cloud particles
- Clouds geometry
- Scattering

Radiative properties of cloud particles:

Resolution of Maxwell's

equations: Spheres: Mie theory

Shape of the ice crystals

Habit diagram of Bailey and Hallett (2009) from laboratory observations.

[Pawlowska & Shipway, 2020]

Vertical structure reconstruction of cloudy scenes from averaged quantities

Single column with a coarse vertical grid grids

Vertical structure reconstruction of cloudy scenes from averaged quantities

Monte-Carlo computation of 3D cloudy scenes

 \leftarrow a) Schematic illustrating the rendering algorithm b) Example of a radiance field produced by the renderer

× Access data ● True collision ● Null collision

Monte-Carlo computation of 3D cloudy scenes

Monte-Carlo computation of 3D cloudy scenes

a) BOMEX

b) ARMCu 1

c) ARMCu 2

d) FIRE

Monte-Carlo computation of 3D atmosphere with sampling of molecular transition (line-by-line)

$$\bar{\phi} = \int_{\Delta t} p_T(t) dt \int_{TOA} p_S(\vec{x}) dS(\vec{x}) \int_0^{+\infty} p_N(\nu) d\nu$$

$$\int_{2\pi} p_U(\vec{u}) d\vec{u} \int_0^{+\infty} \hat{p}_{\mathcal{L}}(t) dt \left\{$$

$$\sum_{j=1}^{Nt(s)} P_{J,\nu}(j) \left(P_{a,\nu,j}(\vec{x}',t) \frac{\pi L_{\nu}^{eq}(T(\vec{x}'))}{p_N(\nu)} \right)$$

$$+ \left(P_{n,\nu,j}(\vec{x}',t) \right) \frac{\pi L_{\nu}(\vec{x}',\vec{u},t)}{p_N(\nu)} \right\}$$

$$\frac{1}{2} \int_{2\pi} \frac{p_U(\vec{u}) d\vec{u}}{p_N(\nu)} d\vec{u} \int_0^{+\infty} \hat{p}_{\mathcal{L}}(t) dt \left\{$$

$$\frac{1}{2} \int_{2\pi} \frac{p_U(\vec{u}) d\vec{u}}{p_N(\nu)} \int_0^{+\infty} \hat{p}_{\mathcal{L}}(t) dt \left\{$$

$$\frac{1}{2} \int_0^{+\infty} \hat{p}_{\mathcal{$$

PhD thesis of Yaniss Nyffenegger-Pere

Monte-Carlo 3D line-by-line model: insensitivity to the integration domain

