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SUMMARY

In Part I of this paper, a mathematical equivalence was established between Eulerian backtracking
or retro-transport, on the one hand, and adjoint transport with respect to an air-mass-weighted scalar
product, on the other. The time symmetry which lies at the basis of this mathematical equivalence can
however be lost through discretisation. That question is studied, and conditions are explicitly identified
under which discretisation schemes possess the property of time symmetry. Particular consideration is
given to the case of the LMDZ model. The linear schemes used for turbulent diffusion and sub-grid
scale convection are symmetric. For the Van Leer advection scheme used in LMDZ, which is non linear,
the question of time symmetry does not even make sense. Those facts are illustrated by numerical
simulations performed in the conditions of the European Transport EXperiment (ETEX). For a model
that is not time-symmetric, the question arises as to whether it is preferable, in practical applications,
to use the exact numerical adjoint, or the retro-transport model. Numerical results obtained in the
context of one-dimensional advection show that the presence of slope limiters in the Van Leer advection
scheme can produce in some circumstances irrealistic (in particular, negative) adjoint sensitivities.
The retro-transport equation, on the other hand, generally produces robust and realistic results, and
always preserves the positivity of sensitivities. Retro-transport may therefore be preferable in sensitivity
computations, even in the context of variational assimilation.

1. INTRODUCTION

In Part I of this paper (Hourdin et Talagrand, 2005), retro-transport of
a perfect retro-tracer was introduced, which describes the reversed temporal
evolution of a scalar field conserved along air trajectories. The retro-transport
equation is derived from the direct equation through simple transformations.
The direction of explicit advection is reversed. This backward advection can
be formulated in a Lagrangian as well as in a Eulerian framework, a remark
which is at the basis of the concept of Eulerian backtracking. Terms describing
linear sources or sinks of tracers are kept unchanged in the retro-transport
equation. Terms representing diffusion by unresolved time-symmetric motions of
the transporting air are also unchanged. For parametrisation of non-symmetric
subgrid-scale motions, the direction of the motions has to be changed in the
reverse computation. This applies to the so-called mass-flux parametrisations of
cumulus convection.

For a linear tracer, the retro-transport equation turns out to be the adjoint
of the direct transport equation, with respect to the scalar product defined by
integration with respect to air mass, (¢, 9) = [ p¢yp dxdt, where ¢ and 1 are
tracer concentrations per unit mass of transporting air (p being the density of
transporting air, and dx and dt volume and time elements respectively). The
retro-transport allows to rewrite any measurement of the direct tracer (with mass
concentration c) of the form

M= ppc dxdt (1)
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as a function of sources and boundary conditions. By taking for ¢* the solution of
the adjoint transport equation defined by the condition that c* =0 at a time #
posterior to the end of the measurement process (u(x, t) = 0 for ¢t > ¢;) and along
the outflow boundary 99, of the physical domain € under consideration (defined
by v.n > 0 where v is the wind vector and n is a unit outward vector normal to
the boundary 02) and with a zero surface flux, one obtains a receptor-oriented
expression for the measurement:

M = /pc*ch,dx—/ pcc v.n aq, dsdl
Q ‘ aQ,’X’T

+/ pcto dxdt+/ Yt dzdydt (2)
QxT SxT

where 7 = [t;, tf] is the time domain, 0€); is the inflow boundary (v.n < 0) and o
and X are 4D and surface sources of tracer respectively.

For a conservative tracer, ¢* is, up to a scaling factor, the distribution at
a given time in the past of the air which will be sampled later on for the
measurement. When there is no inflow into nor outflow from the domain, this
distribution can be combined with the direct tracer concentration at any time
between the end of the emission (o or ) and the beginning of the measurement
process, to estimate the measurement as

M:/ pectdx (3)
Q

The purpose of this second Part is to analyse the equivalence of adjoint and
retro- transport in the numerical world. Because of the spatial and temporal
discretisations, the time symmetry which is at the basis of that mathematical
equivalence may be lost. A discretized scheme will be time symmetric if the direct
code used in retro-transport mode is identical with the exact numerical adjoint
of the direct code. Only linear schemes can be time symmetric. This question of
time symmetry of numerical algorithms is discussed here for the particular case
of the tracer version of the LMDZ global climate model (described in section
2). A numerical illustration of compared direct and retro-transport computations
is presented in the case of the ETEX-1 experiment (section 3). Then the time
symmetry of numerical algorithms is checked (section 4). The linear schemes used
in LMDZ are shown to be time symmetric. However, the symmetry is lost when
the Van Leer (1977) finite volume advection scheme is used. This results from the
non-linearities introduced in the scheme in order to ensure important properties
such as positivity or monotony (a monotonic distribution remains monotonic after
advection). Implications for inversion of atmospheric transport and variational
assimilation are then discussed (section 5) before some conclusions are drawn
(section 6).

2. TRANSPORT COMPONENT OF THE LMDZ MODEL

(a) The LMDZ general circulation model

LMDZ is a general circulation model developed at Laboratoire de Météorologie
Dynamique (LMD) for climate studies. It is used in particular to study the cou-
pling between chemistry, micro-physics and atmospheric dynamics on Earth, Mars
and Titan (Hauglustaine et al., 2004; Lefévre et al., 2004; Rannou et al., 2002).
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It is based on a finite-difference formulation of the primitive equations of meteor-
ology. Equations are discretised horizontally on a global Arakawa C-grid (see e. g.,
Kasahara, 1977) which can be refined on a particular region (the ”Z” of LMDZ
standing for that ”Zoom” capability). The vertical discretisation is based on the
o-pressure coordinate (see e. g., Simmons and Burridge, 1981). With scalars de-
fined at the centre of control volumes and winds at the interfaces, the grid is well
suited for the implementation of conservative finite-volume schemes for advec-
tion. Here we use the LMDZ3 version of the Earth climate model which includes
classical parameterisations for radiative transfer (Morcrette, 1984; Fouquart and
Bonnel, 1980), turbulent eddy-diffusion in the boundary layer (Laval et al., 1981),
convection (Tiedtke, 1989) and clouds (Le Treut and Li, 1991).

(b) The tracer component

The transport of atmospheric tracers was implemented in LMDZ by Hourdin
and Armengaud (1999). The transport equation reads

10 (Fy+ F,
%—I—v.grad c—i—)\c—l—;%:a (4)
with the continuity equation for the air
% +div (pv) =0 (5)

F,; and F, correspond to diffusive and convective parametrisations of the vertical
subgrid-scale flux of tracer c. The coefficient A, which accounts for a linear sink
(or source), can be either a constant (radioactive decay) or a function of space
and time (scavenging by rain, chemical reaction with a prescribed oxidant, ...).

Large scale advection of tracers is computed on the basis of the Van Leer 1
scheme (Van Leer, 1977), a second-order finite-volume scheme with slope limiters
which guarantee positivity and monotony. The diffusive flux reads

Oc )
Fy=— Zp& with Fd'surf =Y and Fd'top =0 (6)

K, being the eddy-diffusivity and X the surface emission of tracer. For convection,
the Tiedtke (1989) mass-flux parametrisation separates the atmospheric column
between an updraught () and a downdraught (). The convective flux reads

F, = fe—fe—(f=fe (7)
where the tracer concentrations per unit mass of transporting air in the updraught
(¢é) and downdraught (&) are given by

%‘E = éc—de (8)
—aai;é = éc—dc (9)
with the associated continuity equations for convective mass fluxes
g—f — ¢—d (10)
I é—d (11)

0z
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where the convective mass flux f (kg m~2 s 1), entrainment é into and detrain-

ment d from the updraught (resp. f , & and d for the downdraught), are positive
quantities equal to zero at the upper and lower boundaries.

Given the space and time evolution of p, v, A\, K,, €, a?, ¢ and d (f and f
being computed according to equations (10) and (11)), the tracer concentration
¢ (x,t) depends on the volume (o) and surface () sources, as well as on the
initial concentration ¢ (x, ¢;) at initial time ¢; and tracer inflow across 0%;.

(¢) Off-line and retro-transport mode

In LMDZ, tracer transport can be computed either on-line, by ”passing”
directly the required meteorological variables p, v, K, é, ci, &, d to the transport
algorithms, or off-line, by reading the same variables from an archive, built-up
in the course of a prior integration of the numerical model. When A is also a 4D
variable linked to meteorology (such as a rate of scavenging by rain), it is archived
as well. The off-line mode then requires the storage of 9 3D variables (the vertical
wind component being recomputed from the mass continuity equation) on the
model grid. This storage is done with a time-step of 3 hours in the simulations
presented below, the meteorological variables being averaged in an appropriate
way between two successive archiving times.

The off-line version of LMDZ can be used either in direct or retro-
transport mode. As explained in Part I, the retro-transport equation is ob-
tained from the direct equations (4 to 11) through the following formal trans-
formation: (¢, p, v, A\, K, &, d, &,d) — (—t, p, —v, \, K, d, &, d, é). In practice, the
retro-transport mode consists in running exactly the same off-line code as in the
direct mode, but reading the meteorological archives backward in time while
changing v, é, d, €, d into —v, d, &, a?, é.

3. NUMERICAL ILLUSTRATION

We show a numerical illustration of Eulerian backtracking in the context of
the European Transport EXperiment (ETEX).t On 23 October 1994, 340 kg of
the insoluble gas Perfluoro-Methyl-Cyclo-Hexane (PMCH) were emitted contin-
uously over a 12-hour period starting at 1600 UTC (¢y) at the top of an 8m-high
tower located in Monterfil (Western France) in a strong and maintained west-
erly to south-westerly flow. A 4-day nudged I integration of the LMDZ model
is performed first, using a stretched grid with a mean horizontal resolution of
about 120x120 km? over Europe. An archive is built with a 3-hour time-step
as described above. The left column of Fig. 1 shows the time evolution of the
surface concentration as obtained with the direct off-line transport model for the
emission of 340 kg of PMCH at Monterfil, between ¢y and ¢y 4+ 3h. Note that
the combination of horizontal transport by sheared wind plus vertical mixing
by turbulence explains the rapid horizontal dispersion of the tracer plume. The

t ETEX was organised by the World Meteorological Organisation, the International Atomic Energy
Agency and the European Commission, to test the ability of transport models to predict the dispersion
of a cloud of pollutant on continental scales.

i In order to remain as close as possible to the observed synoptic situation, the simulated wind and
temperature are relaxed toward the meteorological analyses of the European Centre for Medium-range
Weather Forecasts with a time constant of 2.5 hours. This method, often called nudging, is an economical
alternative to full assimilation of meteorological observations (Jeuken et al., 1996).
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Figure 1. ETEX-1 experiment: snapshots of the simulated surface concentration of PMCH (in ng/m3)

over the 36-hour period following release time ¢g. The time-step for injection and sampling is 3 hours

(for instance the plume at to 4+ 12h corresponds in fact to an average from to + 12 to to + 15h). The

left panels correspond to a direct simulation with injection at Monterfil (circle) between to and to + 3h

of 340 kg of PMCH. The right panels correspond to a backward integration with retro-injection of the
same quantity at station D05 (square) between to + 39h and to + 36h.

Backward ——J—

~f}—— Frorwad

location of the source is the white circle. 24 hours after emission, the PMCH plume
reaches station D05 (square in the figure). The peak concentration is obtained
for the same station 36 hours after emission. On the right hand side, we show
the results of a reverse transport computation for which the 340 kg of PMCH are
injected at station D05 uniformly between ¢y 4+ 39h and ¢y + 36h. Reciprocity is
illustrated in Fig. 1 by the fact that the same concentration is observed at D05
36 hours after emission in the direct simulation (square, lowest panel on the left)
and at Monterfil at emission time ¢, for the reverse simulation (circle, uppermost
panel on the right).

For a more accurate check of the time symmetry, one can retro-inject one
tracer for each measurement (every 3 hours in our case). In Fig. 2(a), we compare
the time evolution of PMCH concentration at station D05 as actually observed
on the occasion of ETEX, and as obtained from direct transport computation
or through backward reconstruction. Here, the direct tracer is injected uniformly
between ty and ty + 12h. Consistently, the retro-plumes are averaged over the
same 12-hour period. The computation is done both with the standard version of
the model based on the Van Leer I second-order finite volume scheme and with
the first order upstream scheme originally proposed by Godunov (1959). The
backward estimates are reconstructed with one retro-simulation for each 3-hour
measurement. For the Van Leer scheme, the backward reconstruction (plus signs)
does not exactly match the direct estimate (black squares) but the discrepancy
is much less than between simulations and observations (full curve). For the
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Figure 2. Numerical test of the time symmetry of atmospheric transport. Panel a: Time evolution of

the PMCH concentration at station D05 as observed and simulated with the Van Leer I and Godunov

schemes and reconstructed from a series of backward transport computations with both schemes. Panel b:

FMTs for the 11 stations retained for model intercomparison by the ETEX team. The FMTs measuring

the difference between direct simulation and observations for the Van Leer I and Godunov schemes are
shown as well as that measuring the difference between the direct and reverse estimates.

Godunov scheme, the direct and backward estimates (white squares and stars)
are indistinguishable at the figure accuracy.

The discrepancies are quantified by using the Figure of Merit in Time (FMT)
defined, when two time series are plotted on the same graph, as the ratio of the
overlap area between the two curves to the total area defined by the envelope.
The FMT, which varies from 0 to 100%, depends both on the time shift between
the two signals and on their relative magnitudes. For the 11 stations retained by
the ETEX team for specific analysis on the time series, the mean FMT measuring
the difference between the direct simulations and observations (black and white
squares in Fig. 2(b)) is about 40%§. By comparison the FMT measuring the
difference between the direct and retro-transport computation is systematically
larger than 75% (black circles). The difference is still much smaller with the
Godunov scheme (white circles, mean FMT of 98.2%). The symmetry can further
be improved by inverting the sequence of individual operators (+ signs, mean
FMT of 99.5%) as explained in Section 4e.

4. TIME SYMMETRY OF THE LMDZ TRANSPORT ALGORITHMS

In LMDZ, large scale advection and parametrisations are applied sequentially.
A model integration reduces to a sequence of transition steps from concentration
field ¢ to field ¢®*!. A complete time-step is the computation of a number of
successive transition steps. We are going to investigate the symmetry of each
individual step by comparing its retro-transport and adjoint formulations.

(a) Adjoint model

Let us denote by (¢, 9)" = ¢T M™yp a discretised scalar product at stage n,
where M™ is a symmetric positive definite matrix, and by L the linear tangent

§ This score is typical of good dispersion models according to the intercomparison study conducted in
the frame of ETEX (Graziani et al., 1996; Klug et al., 1992). A systematic evaluation of the direct model
is out of purpose here and will be presented elsewhere.
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model which describes the forward evolution of a perturbation dc
dc"* = Ldc" (12)

The adjoint L* of L with respect to scalar products M™ and M"t! is defined by
(L*¢, )" = (¢, Lp)™*" for any ¢ and 9, i. e.

L = (Mn)*lLTMn—I—l (13)
The corresponding adjoint model reads
cn =L (14)

With ¢* =V,.J, that model describes the backward temporal evolution of the
gradient of any function J with respect to the model state variables c (see e. g.
Talagrand and Courtier, 1987). This is easily shown by identifying the expressions

for the gradient at stages n and n + 1, dJ = (Ve J, dc™)" = <Vcn+1 J, dc"+1>n+1.

For a linear model, a linear measurement of concentration M = <,u, cN >N
can be evaluated at any time-step n between source and detection time (N) as
M = (Vi M, )", This, with ¢*" = V. M, is a numerical equivalent to Eq. (3).

(b) Checking time symmetry of numerical algorithms

Hence, the time symmetry of a linear numerical model is equivalent to
the identity between the retro-transport mode of the numerical model R (ob-
tained from the direct model L by simple physically-based transformations, here
(v,e,d, ¢ d) = (—v, d, & d, é)) and the exact adjoint code of the direct numerical
model, R = L* where L* is given by Eq. (13). For the air-mass-weighted scalar
product, M = diag(m;) where m; is the air mass in grid cell 7. If we take for
matrix indices the classical convention that ¢; = j L; j¢;, we find for the time
symmetry the following condition between the entries of the direct and retro-
transport matrices

my R; j = m?HLjﬂ- (15)

For parametrisations which do not affect the large scale air density (turbulent
mixing, convection, linear sink or advection by a non divergent wind field), so
that M™ = M™! = M, time symmetry can be checked somewhat more easily by
considering a flux-like form of the model

M (" — ") = A" (16)

which corresponds to L =1+ M~'A. From Eq. (13), L* =1 + M AT so that
the adjoint model (14) reads

M (C*n o C*n—}-l) — ATc*n—i—l (17)

For a model of form (16), the time symmetry will thus be ensured in the numerical
world if the matrix B associated with the retro-transport mode of the direct model
is equal to the transpose matrix of the direct model, B = A”.

The same condition, B = AT, also insures time symmetry of a scheme of form

M (" — ™) = A [y + (1 —7) "] (18)
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which covers the cases of explicit (y = 1), implicit (y =0) and Crank-Nicholson
(v =1/2) time integration for a same operator A. After transforming the equation
above into

M =[-(1-79) MﬁlA]i1 [I+~yM 'A] " (19)

(the inverse matrix on the right hand side exists for a small enough time-step)
application of Eq. (13) yields

o= MTU[T4yATM Y [T— (1 =) ATMY M e (20)
= [[+yM AT [T = (1 =) M AT] e (21)

The matrices [ + aQ] and [I 4+ bQ]™" commute for any matrix Q and scalars a
and b so that Eq. (21) is of the form (19), A being replaced by A”. This proves the

announced result that the condition B = A" ensures time symmetry of scheme
(18).

(¢) The Godunov advection scheme

The time symmetry of the Godunov scheme (suggested by Fig. 2) is derived
here in the simple case of 1-D advection with a non divergent wind u >0, a
constant air density p, a regular grid with grid spacing dz and time-step dt (the
more general case of advection by a divergent wind is considered in Appendix A).
Let us note by o = udét/dx the Courant number. The Godunov scheme reads for
grid cell ¢ and times n and n + 1

c?"'l - =a (c?,l — C:L) (22)

which is of the form (16) with M = I. The corresponding retro-transport scheme
is obtained by inverting the roles of » and n + 1, and changing « into —u. Because
of the change of sign of u, the upwind scheme now reads

¢F -t =a (B - et (23)
It is easily seen that the matrix defining the operator on the right-hand side of this
equation is the transpose of the matrix defining the operator on the right-hand
side of Eq. (22), which shows the time symmetry of scheme (22).

The extension of the Godunov scheme to three dimensions is done in LMDZ
through time splitting. At each time-step, the advection is computed successively
in the directions z, y, z, y, £ (with half a time-step for each computation in the
z and y directions). In each direction, both the tracer transport (Eq. (A.1) of
appendix A) and air-mass continuity equation (Eq. (A.2)) are integrated. This
ensures time symmetry of the global 3D scheme.

In addition to conserving the total tracer content and the monotony of the
tracer field, the Godunov scheme thus ensures one additional physical property
of transport, namely time symmetry. These desirable properties are obtained
however at the price of a strong numerical diffusion. Scheme (22) can be rewritten

o (0%
Gt == (i — ) + 5 (-2 ) (24)

as the sum of a second-order centred scheme and a diffusion with diffusivity
a(0z)?/(26t) = udx /2. The retro-transport scheme (23) similarly reads
O (C*?ff - C*?ﬂl) +2 (c*?ff — 2T 4 cﬁﬁf) (25)

c 2 2 2 2
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Numerical diffusion acts as a diffusion in both the direct and retro-transport
computations, exactly as turbulent diffusion does. Note also that the second-
order finite-difference scheme obtained by ignoring the last term on the right
hand side of Eq. (24) (or Eq. (25) for retro-transport) is also time-symmetric but
does not preserve monotony nor positivity of the tracer field.

Finite volume schemes of higher order, such as the Van Leer I scheme used
in LMDZ, also introduce some numerical diffusion to avoid spurious oscillations.
The diffusivity then generally depends on the tracer field itself (stronger where
tracer gradients are strong) thus breaking the linearity with respect to the tracer
concentration, and hence the very possibility of time symmetry of atmospheric
transport. Implications for inversion algorithms are discussed in section 5.

(d) Physical parametrisations

For turbulent diffusion, the LMDZ model uses an implicit time integration
and centred finite differences on the vertical

mi (T =) = f{z‘+1/2 (G — it - Ri—1/2 (Pt =) (26)

(m is unchanged by mixing) where ¢ is now the index of vertical discretisation
and K; /o is an estimate of K,pdrdydt/d, at the interface between layers i
and 7 + 1. Equation (26) is of the form (18) with =0, the matrix A being
given by A1 =K; 19, Aii=—Kiy12 — Ki 12, Aisiy1 = Kiy1/2, and A; ;=0
for |i — j| > 1. We have shown in Part I that the same diffusion must be used for
direct and retro transport. It is easily verified that A” = A, which shows that the
retro-transport form and the adjoint of scheme (26) are identical.

Linear sinks also conserve the mass of air and can be discretised through a
diagonal matrix A = diag(m;)\;) which ensures time symmetry.

The convective scheme is also time-symmetric as shown in Appendix B.

(e) Full model

With the exception of the Van Leer advection scheme, still to be discussed,
all schemes used in LMDZ for transport and diffusion are thus symmetric with
respect to time. Note that the tracer concentrations ¢} and air masses m[ are
instantaneous state variables whereas U, A, K, and convective mass fluxes are
transfer variables between stages n and n + 1 (or n 4+ 1 and n in backward mode).
The verification of time symmetry for the whole model, once the symmetry is
ensured for each individual step, requires that, for each time step, the sequence
of the individual processes is reversed. This is not done in the standard retro-
transport version of LMDZ which keeps the same order of operations (large-scale
advection, linear sinks, boundary layer mixing, cumulus convection in that order)
both in the direct and retro-transport mode (there is no reason to make special
efforts to ensure time symmetry which is broken when Van Leer I scheme is
used). This essentially explains the remaining difference between the direct and
retro-transport integrations for the Godunov scheme (white circles, Fig. 2(b)).
As already mentioned, when the order of the sequence is reversed in the retro-
transport computation (+ signs in the same figure), the averaged FMT for the
11 stations increases from 98.2 to 99.5%.
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[ air advected from mesh i to i+1 between time n and n+1
[ ] air remaining in mesh i

- e distribution at time n

: + mean concentration in the shaded area

i-1 i-1/2 i i+1/2 grid index
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Figure 3. General principle of Van Leer I finite volume scheme and notations for the present paper.

The vertical coordinate is the tracer mass concentration. The upper horizontal coordinate is the grid

index, while the lower one is the mass counted from the centre of cell ¢ and normalised by the mass m; of

that cell. The shaded areas represent the quantity of tracer which is advected through one cell interface
during one time-step.

5. THE CASE OF ALGORITHMS WHICH ARE NOT TIME-SYMMETRIC

When discretisation does not preserve the time symmetry of atmospheric
transport, one can use either the adjoint or the retro-transport algorithm for
practical applications. The retro-transport algorithm guarantees some important
properties of the retro-transport equation (the same that hold for direct trans-
port). This led us to adopt the retro-transport approach to evaluate the efficiency
of the CTBT network (Hourdin and Issartel, 2000). One could hypothesise how-
ever that the adjoint algorithm, which provides the exact gradient of an objective
function, should be more efficient in the case of variational assimilation. We in-
vestigate this question in a 1D configuration taking as an example the Van Leer
(1977) advection scheme. We first compare various ways of computing sensitivities
and then consider the case of variational assimilation. Note that Vukicevié et al.
(2001) also investigated the possibility of using either the adjoint of the direct
code or the non-linear code used in backward mode in a 2D configuration.

(a) Computation of sensitivities

Van Leer (1977) proposed a whole hierarchy of advection schemes defined on
the same general principle. First a polynomial subgrid scale tracer distribution
is prescribed in each grid cell. Then the transfer of tracer between cells 7 and
1+ 1 is computed as the product of the air mass transfer by an estimate of the
average tracer concentration ¢; ;o in that air which is advected from cell ¢ to
1+ 1 during the time-step. That estimate is determined from the polynomial
interpolation. For 1D advection on a regular grid with a non divergent wind field,
the time evolution of the tracer concentration in cell ¢ is then given by

P & =a (527_11/2 — é?+1/2> with a = udt/dx (27)

7

For the case of an interpolated linear sub-grid scale distribution which will be
considered here, with slope (dc); (from which the concentration at cell boundaries
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reads ¢; = ¢; & (dc);/2 as illustrated in Fig. 3), ¢/, is given by

1
éi+1/2 = ¢+ 5 (1 - Of) (66)1 ifa>0 (28)

1
Citl ~ 5 (1+ ) (dc);,, otherwise. (29)

In the Van Leer I scheme, used in the standard version of LMDZ, the slope is first
estimated by centred finite differences. In order to ensure monotony, it is then
imposed that the absolute value of the slope must be less than twice the absolute
difference between ¢; and either one of its neighbours. The full scheme thus reads

if  { (cit1—¢i) x(¢;—ci—1) >0} then (30)
(66); = (cis1 — 1 1)/2 (31)

if { |(dc);| > 2|c; — ci—1| } then (6c); =2(c; —ci—1)  (32)

if {|(dc),] > 2|ci41 — ¢l } then (0c); =2(cip1 —c)  (33)

else (0c); =0 (34)

We show below the results produced by three different methods for computing
the sensitivity of a measurement to the initial tracer distribution. The first two
methods consist of backward integration of the retro-transport and adjoint models
respectively. The third one consists of explicit perturbation of the initial tracer
concentration, followed by integration of the full nonlinear model. That method
requires one model integration per grid-point. It was verified also that direct
integrations from perturbed initial states with the tangent linear model produce
the same sensitivities as adjoint integration (results not shown).

For a time-symmetric linear system, the three estimates of the sensitivity
should be equal. For a non time-symmetric linear system, the direct perturba-
tion and adjoint estimates should be equal, the retro-transport estimate being
different. Because of the presence of the if statements (30, 32 and 33), the Van
Leer I scheme is nonlinear. As a consequence, the three estimates can be expected
to be different. The retro-transport estimate depends only on the measurement
function. Integration of the adjoint model requires prior storage of the results of
the direct integration, which are then used for implementing the if statements in
the course of the sensitivity computations. The adjoint estimate therefore depends
not only on the measurement function but also on the particular direct solution in
the vicinity of which the sensitivity is determined. As for the direct perturbation
estimate, it depends on the initial state of the direct solution as well as on the
amplitude of the initial perturbations.

Results are presented in Fig. 4. The 1D spatial domain is periodic with 60
grid-points, and the Courant number is a =0.2. Three different initial distribu-
tions of tracer have been used, wiz., total absence of tracer (flat state), a sine
wave and an isolated square wave, both with amplitude one. Fig. 4(a) shows the
result of direct integrations over N=150 time-steps, started from the sine and
square waves respectively. The physically correct solution would be obtained by
translating the initial field by a/N=30 grid-points. The diffusive nature of the Van
Leer I scheme is clearly visible, although the smoother sine wave is less affected.

Fig. 4(b) shows the computed sensitivity functions. The measurement is a
uniform sampling over a 6-grid-point interval. The corresponding measurement
function (i. e. the function p of Eq. (1)) is shown by the thick black curve in
the graphics. The sensitivity is computed with respect to tracer concentration
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Figure 4.
Panel a: Direct transport. Left: sine wave. Right: isolated square wave. Full curve: initial distribution of

Computation of sensitivity functions.

tracer. Dashed curve: numerically computed distribution at time-step 150.

Panels b: Sensitivity functions at initial time for a measurement computed at time-step 30 (left column)
or 150 (right column). The thick black curve, identical for all graphics, is the measurement function.
The other curves show the sensitivity functions computed by the retro-transport model (thick grey
curve), the adjoint model (crosses) and perturbation of the full direct model (squares). Different cases,
corresponding to different initial tracer concentrations and different advection schemes, are shown from

top to bottom (note the different vertical scales for case 3).




EULERIAN BACKTRACKING OF ATMOSPHERIC TRACERS 13

at initial time-step for a measurement computed at time-step 30 (left column)
or 150 (right column). The physically correct sensitivities would be obtained by
translating the measurement function by -6 and -30 grid-points respectively. For
the direct estimate, a perturbation with amplitude g = 1072 is added in turn at
each grid-point.

For case 1 (upper panels of Fig. 4(b)), corresponding to a flat initial state,
condition (30) is never fulfilled. The slope is zero in the adjoint computation,
which then reduces to the first-order Godunov scheme (Eqs 27 and 28 with (dc) =
0). The corresponding sensitivity function is subject to much more dissipation
than the functions computed through retro-transport and explicit perturbation.
The latter two, in addition to being much closer to the physically correct
solution, are also mutually close. This classical situation, in which retro-plumes
are computed a priori for a zero initial concentration, corresponds here to a
singular limit in which the value of the sensitivity depends on arbitrary choices.
Changing the > sign to > in Eq. (30) would lead to different values of the
sensitivity.

Case 2, which corresponds to a sine wave tracer distribution, is less patholog-
ical. Condition (30) is verified at most grid-points, while slope limitation is active,
at a given time-step, at only a few grid-points. The three estimates of the sensitiv-
ity function are significantly affected by numerical dissipation, but mutually close
(the retro-transport sensitivity, which depends only on the measurement function,
is the same as in case 1). It is to be noted however that the direct and adjoint
integrations produce small, but unphysical, negative sensitivities (particularly
visible in the sensitivities at retro time-step 150).

Case 3 corresponds to the isolated square wave. The retro-transport sensitiv-
ity is again the same as before. At retro time-step 30, the adjoint sensitivity starts
showing spurious numerical oscillations, while the other two estimates are close
to each other. At retro time-step 150, both the adjoint and direct computations
exhibit totally unphysical (but different) oscillations, with large negative sensi-
tivities. The instability of the adjoint computation can be explained as follows.
After a number of time-steps in the direct simulation, the square distribution is
no more a square. On both sides of the peak, the concentration is not exactly zero
but decreases by typically one order of magnitude from one grid-point to the next.
As a consequence, downstream of the peak, in the region where the peak of the
sensitivity function is advected, condition (33) is reached everywhere. The adjoint
scheme then corresponds to a direct transport scheme with (dc); = 2(ciy1 — ¢;)-
This scheme is distinctly pathological for two reasons: the finite difference is not
centred and it corresponds to twice the slope that would be normally computed
by finite differences.

To illustrate case 3 further, we show, in Fig. 5(a), direct sensitivities com-
puted at retro time-step 150 (similar to the right panel of Fig. 4(b)) by using
different values of the perturbation amplitude g (¢ = 1078 was used for all the
results shown in Fig. 4). Small values of g produce results which, as can be ex-
pected, are close to the adjoint sensitivities. As g increases, the direct perturbation
sensitivities tend to smooth out and to become progressively closer to the retro-
transport sensitivities (and so to the physically correct sensitivities). We propose
the following tentative explanation for this interesting phenomenon. Because of
the presence in the code of ’if” statements associated with the slope limiters (32)
and (33), each integration of the model goes through a sequence of bifurcations.
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(a) Van Leer I, time-step 150 (b) Van Leer II, time-step 150
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Figure 5. Computation of direct perturbation sensitivity functions with the Van Leer I (a) and II
(b) advection schemes (same conditions as for the lower two panels of the right column of Fig. 4(b)).
Sensitivity functions are shown for different values of the amplitude g of the initial perturbation. The
curves g = 10~8 as well as the adjoint and retro-transport sensitivity functions are also shown in Fig. 4.

For a small enough initial perturbation, that sequence of bifurcations is not mod-
ified (a small perturbation is not ’seen’ by the slope limiters), and the adjoint
sensitivity curve shows that the corresponding local sensitivity is very large. As
the amplitude of the initial perturbation increases, the sequence of bifurcations is
more and more modified, with large fluctuations in the local sensitivities. These
large fluctuations tend to mutually cancel out, which is not surprising since the
slope limiters are intended at maintaining a physically desirable (and, in a sense,
stabilising) property of advection, viz., monotony. Large initial perturbations tend
to smooth out the local sensitivities, and result in smaller values of sensitivity.
Note that retro-transport (which of course includes the effect of slope limiters)
achieves the same goal at a much lower cost than direct perturbation.

Case 4 of Fig. 4 also corresponds to the isolated square wave, but the
integration is now performed with the second of the Van Leer schemes, an
elegant alternative to the first scheme in which the slope (31) is replaced by
(6c); =2 (ciy1 — ¢i) (¢i — ¢i—1) / (ci+1 — ¢i—1). With that formulation, conditions
(32) and (33) are never reached. This second scheme is slightly more diffusive
than Van Leer I but its non linearities are weaker. The same effect is observed as
for case 3, although much less pronounced. For g < 0.0001 and at the accuracy
of the figure (Fig. 5(b)), direct perturbation sensitivities are indistinguishable
from the adjoint-computed sensitivities. For g =1 on the other hand, the direct
sensitivities are closer to the retro-transport sensitivities (as with Van Leer I).

Other results (not shown) confirm that the retro-transport integration gen-
erally produces sensitivities which are close to the direct sensitivities obtained
with large initial perturbations.

It is seen that in the cases when it is unambiguously defined, the adjoint
gives, as it must, very accurate estimates of the numerical sensitivity of the direct
transport algorithm. In strongly nonlinear systems however, those numerically
exact estimates can be unphysical, with unrealistic oscillations and negative val-
ues. By comparison, the retro-transport algorithm, which is robust and preserves
positivity (as well as monotony), produces sensitivity estimates which, even with
the strongly nonlinear Van Leer scheme I, are sometimes more realistic and, in
any case, never grossly erroneous.
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(b) Minimisation ezperiments

The retro-transport and adjoint schemes are now compared in the possibly
more testing conditions of variational assimilation, intended at reconstructing
the tracer distribution from observations distributed in time. The experimental
procedure used here, of the classical twin experiments type, is standard in
evaluation of assimilation algorithms. A reference simulation, denoted y7', is first
performed over N time-steps, and taken as the truth. Synthetic observations of
the form ). p;y;' are then extracted from that truth by applying at each time-
step n a measurement function p = (u;). For any solution ¢} of the transport
equation, the scalar objective function

J(y,0)=> [Z Hiyi — Z /MC?] (35)

measures the misfit between that solution and the observations. The objective
function is then minimised with respect to the tracer concentration ¢! at the
initial time of the reference simulation.

The minimisation is performed using the code M1QN3 developed by Gilbert
and Lemaréchal (1989). It is an iterative code, each step of which requires the
explicit knowledge of at least an approximation of the local gradient of the
objective function. It is of the quasi-Newton type, meaning that the sequence
of computed local gradients is used to progressively build up an approximation
of the inverse Hessian (matrix of second derivatives) of the objective function.
Appropriate use of that approximate inverse Hessian makes the minimisation
particularly efficient, at least if the gradient varies smoothly. Two series of
experiments have been performed, in which the gradient was estimated either
exactly by the adjoint model, or approximately by the retro-transport model.

Experiments are performed with the same 1D model used in the previous
subsection. The length of the reference simulation, N = 300 time-steps, corre-
sponds to one period of advection over the complete domain. The measurement
function is the uniform local sampling represented in Fig. 4. The reference field
is therefore completely sampled over the reference period, with the consequence
that the minimum of the objective function (35), in addition to being equal to
zero, is unique.

Results are presented in Fig. 6. The initial state of the reference is an
isolated square wave, of the same width as the measurement function, and located
half a period away from it. The Van Leer I scheme is used for advection. The
minimisation is started from a state that is free of tracer. The minimisation
is continued until the increment between two iterations becomes smaller than a
prespecified threshold. Fig. 6(a) shows that, as can be expected, the minimisation
leads to a smaller value of the objective function when performed with the adjoint
model. However the first steps of the minimisation are faster with the retro-
transport algorithm. The reconstruction of the initial concentration (shown in
Fig. 6(c)) is also slightly better with the retro-transport algorithm (compare also
the estimation errors in Fig. 6(b)). Both reconstructions are rather crude because
measurements are available only at some distance from the source (which would
be the case in many real applications). In fact, direct advection computations
starting either from the exact initial state or from the initial states obtained after
minimisation (shown in Fig. 6(c)) lead to almost the same tracer distribution
at time-step 50 of the assimilation period (Fig. 6(d)). It is here the numerical
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Figure 6. Results of experiments of variational assimilation of synthetic tracer observations. The initial
truth to be reconstructed is represented by the full thick curve in Panel c¢. The objective function
(Eq. (35)) to be minimised is computed with the measurement function represented by the thick dashed
curve in panels ¢ and d. The minimisation is started from a state free of tracer. Panel a: Variations of
the value of the objective function with the number of iterations of the minimisation algorithm. Panel
b: Variations of the estimation error at the initial and final times of the assimilation interval. Panel c:
True and reconstructed (at the end of the minimisation) tracer concentrations at initial time. Panel d:
Same thing as panel c, at time-step n = 50 into the assimilation interval.

diffusion that makes it difficult to reconstruct the initial tracer distribution. But
a physically realistic turbulent diffusion would produce the same effect.

Other results (not shown) confirm the conclusions obtained from Fig. 6.
With the retro-transport algorithm, the decrease of the objective function rapidly
saturates to a relatively large value, while it most often goes on to much smaller
values when using the adjoint. No significant difference is apparent however
in terms of the quality of the reconstruction of the fields. The reconstruction
of the truth at initial time is actually often slightly more accurate with the
retro-transport algorithm. It must also be noted that there were some cases
where the minimisation process did not converge when using the adjoint code,
while it always converged with the retro-transport code. These results are
consistent with the interpretation that has been given of the results of Fig. 5. The
approximate smooth gradient allows rapid, but not perfectly accurate localisation
of the minimum of the objective function. More accurate localisation requires
the exact numerical gradient, which describes the small-scale variations of the
objective function (Fig. 6(a)). Now, more accurate localisation does not seem
to be practically useful (Fig. 6(b) to (d)). Worse than that, the exact gradient
oscillates so much in some cases that the minimisation algorithm fails. The general
conclusion is that, at least in the present example, an approximate but smooth
gradient is preferable to an exact but rapidly oscillating one.

6. CONCLUSIONS

In Part I, a mathematical equivalence was established between Eulerian back-
tracking, or retro-transport, on the one hand, and adjoint transport with respect
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to the air-mass-weighted scalar product on the other. Eulerian backtracking basi-
cally requires only changing the signs of a number of terms in the direct transport
equation. This is of practical advantage in terms of development and maintenance
of codes. The mathematical equivalence between the retro-transport and adjoint
equations, or time symmetry, can however be lost through discretisation, and this
second Part has been devoted to the numerical aspects of Eulerian backtracking.

It has been shown that time symmetry is ensured for the schemes used in
the LMDZ model for eddy-diffusion and cumulus convection. As a general rule,
ensuring time symmetry of schemes for sub-grid scale transport should not be
difficult. For instance, exchange matrices used in some sophisticated mass flux
schemes of cumulus convection (Emanuel, 1991), or transilient matrices of the
type proposed by Stull (1984) for vertical transport in the planetary boundary
layer would have to be simply replaced by their transposes.

The situation is not as simple for advection schemes. Some simple schemes
such as the Godunov first order scheme or the second-order finite-difference
scheme (obtained by ignoring the second term on the right-hand side of Eq. (24))
are symmetric. But both suffer from intrinsic deficiencies such as irrealistic
diffusivity for the former and non positivity for the latter. Vukiéevié et al. (2001),
who investigated the numerical properties of computations of 2D advection
in the context of variational data assimilation, also found that one particular
linear transport algorithm, the QUICK algorithm, is time symmetric. More
sophisticated schemes, intended at guaranteeing desirable properties such as
conservation of the total quantity of tracer, positivity, monotony, stability, or
weak diffusivity, generally introduce non linearities, thus breaking the equivalence
between backward and adjoint transport. In that case, the adjoint algorithm
provides a sensitivity which depends on the direct tracer concentration and is
numerically exact, but may be physically unrealistic. Retro-transport provides
on the other hand a unique but approximate sensitivity, which has the distinct
advantage of always being positive if the direct scheme preserves positivity.
Positivity can be absolutely fundamental, for instance when combining retro-
plumes from different stations in order to localise a source of pollution.

Numerical experiments performed in the simplest possible situation (1D ad-
vection) with two versions of the (nonlinear) Van Leer advection scheme strongly
suggest that retro-transport, because of its robustness and its preservation of
positivity, may be preferable to exact adjoint integration, even for the purpose
of numerical minimisation. Note that Vukiéevi¢ et al. (2001) reached similar con-
clusions with a different algorithm. That result is important. Concerning min-
imisation, experience has shown that even minor errors in the determination of
the gradient can totally inhibit the minimisation. That need not be true if the
approximate gradient is in some sense physically sufficiently ’sound’.
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A. SYMMETRY OF THE GODUNOV SCHEME FOR A DIVERGENT WIND

Let us introduce the mass transfer U; /5 between grid cells ¢ and 4+ 1 and times n and n +1 (time
integral of the total mass flux across the interface). Assuming, to fix ideas, that mass fluxes are positive,
the upstream scheme reads

n+1 n+1 n,n
m; ¢ —myc = U;_ 1/20?_1 — Ui+1/20? (Al)
with “
n n
My T My =Uimiyz = Usqaye (A.2)
Equation (A.1) is of form (12), L being given by
U,
n _ Yi—-1/2
Lii= me—try =2 and L;;—1 = o (A.3)
2 2

Backward upwind advection (by wind —U) corresponds to a matrix R with

1 1
mi T —Uiyys _mP —Uipyye _ mit

R;; = = = L;; A4
Q.0 'ITL:L m? m? i ( )
and U 1
i+1/2  mip1™
Riip1=— = Lit1, (A.5)
my my

This shows that R and L verify condition (15) and that the scheme A.1 is time symmetric.

B. SYMMETRY OF THE CONVECTION SCHEME

Here we derive the symmetry of the mass flux scheme, considering for simplicity the case of a unique
updraught compensated by a slow subsidence in the environment. In the implementation retained in
LMDZ, the transport terms are treated with an upstream scheme (numerical diffusion is not an issue
here). The continuity equations for air and tracer in the updraught (Egs. 10 and 8 respectively) are
discretised along the vertical as

Ei+F;_1/3=Di+ F;115 (B.6)

and
Eic} + F;_128i-1 =& (D; + Fi11/2) (B.7)

where E; ~ 620t and D; ~ ddzdt are the lateral entrainment and detrainment into and from the
updraught for layer ¢ during time-step 6¢, and Fj /o ~ fdt is the updraught mass transfer between
layers ¢ and ¢ + 1, with the conditions that F' equals zero at the lower and upper boundaries. The time
evolution of the large scale tracer concentration restricted to convective processes, obtained by combining
Eq. (4) and Eq. (7) with v=0, A=0, F; =0 and f = 0, which reads

e af(e—c

= B.8
ot oz (B-8)
is discretised as
micP Tt —mic} = Fi_ypéio1 — Fipayebi + Fig172€), — Fy_qjach (B.9)
= Diti — Eic} + Fiq1a¢), — F;_q/5c} (B.10)

This is of form (16). Since the model is linear, the entries A;; of the corresponding matrix A
can be obtained by computing mic?‘H —m;c} in layer ¢ for a tracer injection restricted to layer j
(cp = d&,j)- Let us first compute the concentration in the updraught for this particular injection. Below
the injection (k < j), é = 0. At the layer of injection the concentration in the updraught is given by
¢j (Dj + Fjy1/2) = Ejc?. Above the injection (k> j), & (Dk + Fyy1/2) = éx—1Fx_1/2 and, through
iteration, Hi
i — Fy_
a= I Firpp 5= _ch=itl K212 _pen (B.11)
i e Dy + Fk+1/2 Hk=j (Dk + Fk+1/2)
=j
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The tracer in the updraught is then detrained in the environment in layer ¢, yielding, for ¢ > j,

'Hi=j+1 Fy_1/2
[Ti=; (Dx + Fry1/2)

In the injection layer ¢ = j, a similar computation shows that

Ai,j =D;¢; = EjDi (B.l?)

D;E;

B R o)
J

(B.13)
The large scale concentration is also affected by subsidence just below the layer of injection (mj_lc?j'll =
F;_1/2) so that

Aj_1,5=F;j_1/5 and A;;j=0 for i<j—1. (B.14)
The scheme for retro-transport is obtained by inverting the roles of D and E and changing the direction
of the vertical propagation. It is also of form (16), the matrix A being replaced by the matrix B obtained

by performing the corresponding modifications on Eqs (B.12-B.14). This yields, for retro-injection in
layer j,

i—1
[TZ; Fry1/2

Bi,j = DjEi for i<y, (B.15)
k=i (B + Fi_1y2)
E;D;
Bj; = —Fjiip—Dj+— 2 (B.16)
J»J Jjt1/ J (Ej +Fj_1/2) ’
Bjt1,; = Fj+1/2 and B; ;=0 for ¢>j+1. (B.17)

Using the continuity equation (B.6), one verifies that B = AT, which shows the equivalence of the retro
and adjoint transport algorithms.



