
1. Introduction

Cloud–radiation interactions, through their strong impact on the Earth’s global energy balance (Ramana-

than etal., ), are key processes in the evolution of the Earth’s climate. The radiative effect of cumulus 1989

Abstract  Process-scale development, evaluation, and calibration of physically based 

parameterizations of clouds and radiation are powerful levers for improving weather and climate models. 

In a series of papers, we propose a strategy for process-based calibration of climate models that uses 

machine learning techniques. It relies on systematic comparisons of single-column versions of climate 

models with explicit simulations of boundary-layer dynamics and clouds (Large-Eddy Simulations 

[LES]). This paper focuses on the calibration of cloud geometry parameters (vertical overlap, horizontal 

heterogeneity, and cloud size) that appear in the parameterization of radiation. The solar component 

of a radiative transfer (RT) scheme that includes a parameterization for 3D radiative effects of clouds 

(SPARTACUS) is run in offline single-column mode on an ensemble of input cloud profiles synthesized 

from LES outputs. The space of cloud geometry parameter values is efficiently explored by sampling 

a large number of parameter sets (configurations) from which radiative metrics are computed using 

fast surrogate models that emulate the SPARTACUS solver. The sampled configurations are evaluated 

by comparing these radiative metrics to reference values provided by a 3D RT Monte Carlo model. The 

best calibrated configurations yield better predictions of TOA and surface fluxes than the one that uses 

parameter values computed from the 3D cloud fields: The root-mean-square errors averaged over cumulus 

cloud fields and solar angles are reduced from 10Wm 2 with LES-derived parameters to 5Wm 2 with 

adjusted parameters. However, the calibration of cloud geometry fails to reduce the errors on absorption, 

which remain around 2–4 Wm2.

Plain Language Summary A way to improve the accuracy of climate models is to improve 

the physical formulations that represent the effects of small-scale processes on the evolution of

atmospheric state. Processes that involve clouds and radiation are particularly important due to their key 

role on climate. Choosing values for the parameters inherent to these formulations is a difficult task. This 

series of papers presents a rigorous strategy for calibrating models. It is based on comparisons between 

high-resolution models that accurately represent clouds and single-column versions of a climate model, 

on the basis of process-oriented metrics such as cloud height. A set of acceptable parameters is efficiently 

found using machine learning techniques. In this third part, the parameters that control the radiative 

effects of cloud geometry are calibrated. A recent radiation model that includes realistic representation 

of the radiative effect of cloud heterogeneity, cloud vertical structure and cloud size is evaluated and 

calibrated using references that are provided by a ray-tracing algorithm that tracks virtual photons in 

virtual cloud fields produced by high-resolution models (Large-Eddy Simulations [LES]). Calibration 

improves the model with respect to using parameters diagnosed in the LES. Good agreement is found only 

when interception of sunlight by cloud sides is represented.
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clouds is particularly important due to their permanent presence in large regions of the Earth’s troposphere 

and their large optical thickness (Berg etal.,2011). They are responsible for a large proportion of the uncer-

tainty around climate sensitivity (Bony etal., ; Dufresne & Bony, ). Cloud–radiation interactions 2015 2008

are also key for climate model tuning. A common practice involves adjusting cloud parameters to match the 

observed cloud radiative effect (CRE) (Hourdin etal., ). This can lead to selecting model configurations 2017

in which errors in cloud properties and in the parameterization of radiative transfer (RT) compensate for 

each other. A famous example of that is the “too few too bright” syndrome found in numerous climate mod-

els (Karlsson etal., ; Nam etal., ), in which the underestimated cover and overestimated optical 2008 2012

depth of low clouds yield an acceptable global CRE.

Accurately predicting the radiative effects of cumulus clouds is, therefore, of major importance, yet re-

mains challenging, particularly when the detailed 3D structure of these geometrically complex clouds is 

unknown, as is the case in large-scale models (see e.g., Barker etal.( )). The effects of cloud geome2003 -

try are most often separated into three aspects: the vertical overlap of cloudy regions occupying distinct 

model layers, which controls the total cloud cover; the horizontal variability of in-cloud water content,

which controls the mean transmissivity of the cloudy region of the layer (inhomogeneous clouds are less 

opaque than their homogeneous counterpart; Newman etal.( )); and the cloud size which controls 1995

the intensity of radiative exchanges between clouds and their “clear-sky” environment, called 3D effects. 

Examples of 3D effects include the interception of direct sunlight by cloud sides when the sun is not at 

zenith (McKee & Cox, ), which decreases transmission; or the channeling of downward flux and1974

entrapment of upward flux towards the surface (Hogan etal., ; Várnai & Davies, ), which both 2019 1999

increase transmission. The sign of resulting 3D effects depends on solar zenith angle. Gristey etal.(2020) 

found that 3D effects of subtropical land cumulus fields act to heat the surface when averaged over a di-

urnal cycle; neglecting these effects in climate models might introduce significant errors in the predicted 

evolution of the system.

Various propositions have emerged in recent years to take these effects into account. In the Monte Carlo In-

dependent Column Approximation (McICA) of Pincus etal.( ), 1D RT is solved in subcolumns that are 2003

sampled based on vertical overlap and horizontal heterogeneity assumptions. The representation of cloud 

geometry is hence separated from the resolution of RT. In SPARTACUS (Hogan & Shonk, ; Hogan 2013

etal., ,2016 2019 2016; Schäfer etal., ), the 3D structure of clouds is intrinsically mixed with the two-stream 

equations that are used to solve RT within the cloudy column. SPARTACUS is the only parameterization 

that includes 3D effects in addition to overlap and heterogeneity effects. This paper is dedicated to the 

evaluation and calibration of SPARTACUS, with specific attention paid to its internal modeling of cloud 3D 

geometry.

This is the third part of a series of papers in which a novel approach for climate model tuning is defended. 

A first calibration step is advocated for, during which Single Column Models (SCM) and Large-Eddy Simu-

lations (LES) are compared using process-scale metrics in order to eliminate regions of the parameter space 

where the SCM parameterizations produce unsatisfying results. During the final global model tuning, only 

the parameter values that were not rejected during the first step are explored. This ensures that only model 

configurations that reach the calibration target for the good reasons (for instance, produce the right CRE 

for the right clouds) can be selected, thereby limiting compensation errors. Part I (Couvreux etal.,2020) 

describes this approach and the associated numerical tools. Part II (Hourdin etal., ) applies them to 2020

the calibration of a 3D climate model after prior calibration of the parameterization of shallow convection 

in the SCM/LES framework.

Here, we go one step further in this effort to untangle the sources of uncertainties in climate models by 

calibrating SPARTACUS cloud geometry parameters assuming perfect cloud profiles.

In practice, 3D RT is solved by Monte Carlo (MC) in 3D cloud field outputs from LES of four idealized cu-

mulus cases to provide reference radiative metrics. These same 3D cloud fields are summarized to a handful 

of vertical profiles (most importantly cloud fraction and liquid water content (LWC)) that are provided as 

inputs to SPARTACUS, whose outputs are compared to the MC references. SPARTACUS also requires the 

specification of parameters related to cloud geometry. As these parameters have a physical interpretation, 

values can be derived from the LES cloud fields. Alternatively, they can be adjusted using the calibration 
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tool described in Part I (Couvreux etal., ). This latter approach is arguably more appropriate given the 2020

structural errors in the model (see discussion in Section ).4

The paper is organized as follows: Section2 describes the ecRad RT scheme, the MC model, the 3D LES and 

the resulting 1D profiles. In Section , the High-Tune: Explorer calibration tool is briefly described before 3

being applied to SPARTACUS. Four calibrated configurations are then analyzed. The main results are dis-

cussed in Section .4

2. Radiative Transfer Models and Cloudy Atmosphere Data

This section presents the SPARTACUS solver of the ecRad radiation scheme we are calibrating (Hogan 

& Bozzo, ), the MC model (Villefranque etal., ) that serves as reference, the LES clouds and the 2018 2019

methodology used to translate these 3D fields into the 1D profiles used as inputs to ecRad.

2.1. ecRad

The ecRad scheme (Hogan & Bozzo, ) has been operational in the Integrated Forecasting System (IFS) 2018

at the European Centre for Medium-Range Weather Forecasts (ECMWF) since 2017. Recent efforts have led 

to a notable increase in flexibility as well as in efficiency compared to previous schemes. Another important 

step was the development of SPARTACUS (Hogan et al., ; Schäfer etal., ), a two-stream 2016 2019, 2016

based solver that explicitly represents the 3D effects of clouds. An offline version of ecRad is freely avalaible 

at https://github.com/ecmwf/ecrad. The configuration used in this paper is summarized in Table .1

Three parameters need to be provided to SPARTACUS in addition to standard cloud profiles. They relate 

to the three main aspects of cloud geometry mentioned in the introduction: vertical overlap, horizontal 

heterogeneity and cloud size.

1. Overlap decorrelation length. Following Hogan and Illingworth( ), the cloud cover 2000 Ci i, +1  of two 

adjacent layers of cloud fractions ci , ci+1 is expressed as

 
      , 1 , 1 max 1 , 1 rand 1( , ) (1 ) ( , )i i i i i i i i i iC C c c C c c (1)

1.  where Cmax and Crand are two cloud covers computed respectively from the “maximum” and “random” 

overlap of cloud fractions and  is the overlap parameter. It is modeled as an exponential function:α





 , 1

0

 ( , 1)
exp( )i i

z i i

z
 (2)

1. ,  where ∆z (i i+1) is the vertical distance that separates the center of the two layers and z0 is the overlap 

decorrelation length.

2. Fractional standard deviation of in-cloud liquid water. Following the Tripleclouds model of Shonk 

and Hogan( ), the effect of horizontal variations of LWC on radiation is accounted for by dividing 2008
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Property Option Reference

Gas model RRTMG-IFS Iacono etal.( )2008

Aerosols None

Liquid cloud optics SOCRATES Manners etal.( )2017

Liquid water content distribution shape Gamma

Cloud overlap scheme Exp-Ran Hoganand Illingworth( )2000

Solver SPARTACUS Hogan etal.( ); Schäfer etal.( )2016 2016

Entrapment Explicit Hogan etal.( )2019

Table 1 
Configuration of ecRad in the Following Work
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each layer’s cloudy region into two thin and thick sub-regions. To distribute the LWC into the two sub-re-

gions of a given layer and infer their respective optical depths, a gamma-shaped distribution of the liquid 

water is assumed, characterized by a mean and a standard deviation . The fractional standard deviation σ

(FSD) of the distribution (ratio of  to the mean in-cloud LWC) is used to characterize the horizontal σ

variability of LWC in each layer.

3. Radiatively effective cloud scale. Following Hogan and Shonk ( ); Hogan et al. (2013 2016 2019, ), 

terms are added in the two-stream equations of Tripleclouds to account for horizontal transport. These 

terms are proportional to the length of the interface between clear and cloudy regions: For a given cloud 

fraction, 3D effects will be larger for a large number of small clouds than for a single large cloud. The 

cloud perimeter density  (perimeter length per surface units) is modeled as:p




4 (1 )

s

c c
p

C
 (3)

where  is the cloud fraction and c Cs is the radiatively effective cloud scale (or size).

2.2. Monte Carlo Reference Computations of Solar 3D RT

A MC method is used to compute solar 3D RT in 3D cloud fields, considered as the “truth” in comparisons 

to ecRad estimates.

MC methods are widely used to accurately compute 3D RT in complex media (see for example Marchuk 

etal.(1980), Mayer(2009), or Marshak and Davis(2005)). The model used here is based on the High-Tune 

library described in Villefranque etal.( ), and is freely available online at 2019 https://gitlab.com/najdavlf/

scart_project. The algorithm consists in tracking a large number of virtual photon paths throughout a virtu-

al medium, explicitly simulating all radiative processes such as emission, absorption, scattering, and surface 

reflection. Whenever a path hits the ground or the TOA, its weight is added to a virtual sensor. Paths are 

terminated upon absorption or escape in space.

In this work, each simulation consists of 10million paths so that the MC errors in our metrics are around 

0.1%. Fewer paths would have been necessary to estimate the boundary fluxes to the same accuracy. The 

relative error on absorption is larger because absolute absorption is small and because absorption is com-

puted from TOA and surface fluxes, therefore the error on the absorption is the sum of errors for TOA and 

surface estimates.

The optical properties input to the MC model are the same as in ecRad, that is, RRTM-G data for gas (Iacono 

etal.,2008) and SOCRATES data for clouds (Manners etal.,2017). Spectral integration is performed in both 

models on the 0.2–12.2µm interval. This prevents compensating errors between cloud geometry effects and 

mismatched optical properties.

Three important differences between SPARTACUS and the MC model remain. First, SPARTACUS is a two-

stream model that relies on the asymmetry parameter  instead of the detailed angular scattering phase g

function that is used in the MC model (see SupportingInformation for details). Second, SPARTACUS (as 

with many atmospheric two-stream RT solvers) is based on the -Eddington approximation of Joseph δ

etal.(1976), which corresponds to scaling the optical properties of the clouds to account for large amounts 

of energy scattered in a very small solid angle around the forward direction. Third, SPARTACUS only sees 

vertical profiles that summarize the 3D structure of clouds while the MC model acts upon the fully detailed 

3D cloud field. Using this MC model as a reference to adjust geometry parameters will mask compensating 

errors between geometry effects and pure RT. We argue that this is legitimate since these aspects are funda-

mentally entangled in SPARTACUS.

2.3. 3D Fields From LES

For this study, four idealized cumulus cases have been simulated using the French LES model Meso-NH 

(Lac etal., ; Lafore etal., ):2018 1997
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• ARM-Cumulus (ARMCu); (Brown etal.( )), a case of continen2002 -

tal cumulus developing over the Southern Great Plains, with a clear 

signature of the diurnal cycle of the boundary layer in the cloud char-

acteristics. Cloud cover ranges from 0% to 30 .%
• BOMEX (Siebesma etal., ), a case of marine shallow cumulus 2003

forced with constant surface fluxes through the simulation. Cloud 

cover ranges from 10% to 20 .%
• RICO (vanZanten et al., ), a second case of marine cumulus, 2011

forced with constant sea surface temperature through the simulation. 

Cloud cover ranges from 15% to 25 .%
• SCMS (Neggers et al., ), a case of continental cumulus devel2003 -

oping in Florida, with strong moisture advection into the domain 

caused by the nearby ocean. Cloud cover ranges from 0% to 45 .%

All simulations were performed on small domains (6.4× 6.4 ×4 km) 

with high spatial resolution (25×25×25m). The horizontal bounda-

ry conditions are periodic. The four cases are standards of the literature 

used in LES intercomparison exercises. Detailed descriptions of the set-

ups, initial conditions, and forcings can be found in the reference papers. 

From these four simulations, 35 3D fields of temperature, pressure, mix-

ing ratio of water vapor, and liquid water are used in this study, among 

which eight will be used in the calibration process of Section  (the color3 -

ed entries in Table ).2

Using an object-identification tool (freely available at https://gitlab.com/

tropics/objects 2019; Brient et al. ( )), individual clouds are labelled in 

each field. A cloud is defined as an ensemble of contiguous cells where 

the liquid mixing ratio is greater than 106kg/kg. Each scene is then de-

scribed in terms of cloud characteristics, some of which are presented in 

Table2. The cloud cover is the fraction of cloudy columns in the domain. 

To first order, cloud cover controls the transmitted and reflected solar 

fluxes. The number density is the total number of identified clouds in 

the scene divided by the horizontal surface of the domain. For a given 

cloud cover, a larger number density indicates a longer interface between 

clouds and clear sky, hence more 3D radiative effects. The maximum 

depth is the highest minus lowest altitudes at which clouds are present. 

When the sun is not at zenith, the “effective” cloud cover (i.e., the cloud 

cover projected in the sun’s direction) depends on the cloud layer depth. 

Surface CREs computed by MC are also provided at solar zenith angles 

(SZA) 0° and 77°. CREs are computed as the difference between a full-sky 

simulation (including clouds) and a clear-sky simulation (where clouds 

are removed).

Some of the cloud fields might not be realistic because of the small do-

main size or other numerical constraints (see e.g.,Gristey etal.(2020)). 

Calibration tests have been performed with a wider domain showing 

only weak sensitivity (not shown). Another limitation of the LES is that 

clouds were simulated using a one-moment microphysical scheme that 

did not predict droplet concentrations, hence no detailed information 

on droplet size was directly available in the 3D fields. In the radiation 

computations, the droplet size distribution is therefore assumed to be the 

same everywhere within the clouds, with an effective radius of 10µ m. 

In both cases, what matters the most for the calibration is that ecRad and 

MC see exactly the same clouds.

VILLEFRANQUE ET AL.
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Case Hour
Cover 

(%)

Number 
density 
(km2)

Max 
depth 
(km)

Surface CRE (Wm2)

SZA 0° SZA 77°

ARMCu 04 2.722 0.73 0.175 1.10 1.35

ARMCu 05 13.174 1.59 0.300 7.79 8.63

ARMCu 06 27.139 1.39 0.525 53.36 30.74

ARMCu 07 29.416 2.00 0.825 74.24 38.08

ARMCu 08 26.343 1.64 1.225 69.87 38.32

ARMCu 09 26.180 1.44 1.050 63.63 39.03

ARMCu 10 23.499 1.61 1.375 61.15 33.63

ARMCu 11 23.029 1.15 1.275 71.51 41.70

ARMCu 12 12.663 0.81 1.450 36.79 19.32

BOMEX 04 13.884 2.71 1.025 20.03 18.63

BOMEX 05 16.301 2.17 1.200 30.29 22.15

BOMEX 06 18.001 2.71 1.200 28.67 22.10

BOMEX 07 18.204 2.69 1.125 35.71 25.26

BOMEX 08 19.081 2.25 1.375 37.20 27.50

BOMEX 09 14.175 2.39 1.075 23.52 17.64

BOMEX 10 16.585 2.05 0.975 34.17 23.67

BOMEX 11 10.318 2.00 0.775 14.40 11.16

BOMEX 12 14.294 2.15 0.650 20.23 15.05

RICO 04 13.933 2.27 0.950 18.30 18.68

RICO 05 13.802 2.15 0.850 19.84 17.41

RICO 06 17.195 2.25 1.025 27.90 26.22

RICO 07 18.054 2.34 1.175 33.32 27.50

RICO 08 19.252 2.69 1.225 40.16 29.69

RICO 10 23.451 2.20 1.425 59.46 31.64

RICO 11 21.048 2.25 1.125 41.24 30.15

RICO 12 16.768 2.32 1.350 34.01 25.02

SCMS 04 44.035 4.86 1.050 103.42 56.07

SCMS 05 37.947 3.71 1.450 104.15 55.75

SCMS 06 32.010 2.78 1.400 90.75 42.64

SCMS 07 29.108 2.51 1.450 78.74 44.19

SCMS 08 20.961 2.05 1.725 52.24 34.19

SCMS 09 15.678 1.88 1.600 33.70 22.65

SCMS 10 18.272 1.81 1.200 38.85 26.65

SCMS 11 11.980 0.93 1.050 28.47 18.79

SCMS 12 1.502 0.51 0.325 1.24 1.20

Scenes selected for the calibration process are in bold and colors.

Abbreviations: ARMCu, ARM-Cumulus.

Table 2 
Cloud Characteristics From the 35 Scenes Issued From Four Standard 

Cumulus Cases Simulated by LES
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2.4. 1D Profiles From 3D Fields

From each 3D cloud field output from LES, 1D profiles are derived to serve as inputs to ecRad. Tempera-

ture, pressure, vapor, and liquid mixing ratios are horizontally averaged from the 3D fields on each vertical 

level and extended above the LES domain top using the I3RC (Cahalan etal., ) mid-latitude summer 2005

(MLS) cumulus profiles provided in the ecRad package. There is no cloud above the LES domain. Gas 

mixing ratios (other than water vapor) are set as in the I3RC MLS cumulus case. Cloud fraction is comput-

ed at each level as the fraction of cells where the liquid mixing ratio is positive in the 3D field. The three 

parameters needed to characterize cloud geometry for SPARTACUS can also be estimated directly from 

the LES fields.

The overlap parameter can be computed from a 3D cloud field between each pair of layers by inverting 

Equation1. Vertical profiles of overlap diagnosed in the 35 LES scenes are illustrated in Figure . Overlap 1a

is most often greater than 0.7, with an average value (over the scenes and the vertical levels) of 0.876. It 

shows relatively small variations on the vertical as well as between the different scenes. Inverting Equa-

tion2 for the average  yields an average decorrelation length α z0 of around 189m, close to the values found 

by Neggers etal.( ) in LES cumulus fields yet much smaller than the range reported by Hogan and 2011

Illingworth(2000), probably because of our smaller vertical resolution as hinted by the sensitivity analysis 

presented in their Table1.

The FSD, that is, the ratio of in-cloud LWC horizontal standard deviation to mean in-cloud LWC is easily 

diagnosed in each layer of the LES 3D fields since the LWC horizontal distribution is directly accessible. 

Computed FSD profiles are illustrated in Figure . Again, relatively small variations are observed as both 1b

height and scenes change. The FSD ranges from 0.3 to 1 with an average value of 0.7, in agreement with the 

literature (see e.g., Shonk etal.( )).2010

In 3D cloud fields, the true (resolution-dependent) cloud perimeter could be diagnosed in each layer. How-

ever, Schäfer etal.( ) have shown that accounting for small-scale fluctuations of cloud edges leads to 2016

an overestimation of the radiatively effective perimeter and hence of 3D effects. They advocate the use of
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Figure 1.  Vertical profiles of the three geometric parameters, scaled on the cloud layer depth (height 0 is the base 
of the cloud layer, height one is the top of the cloud layer). Gray and colored curves are for individual cloud scenes 
(colored curves are the fields used for dark blue : ARMCu, light blue : BOMEX, yellow : RICO, red : SCMS) and dashed 
black line is the average value over all cloud scenes and heights.
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a cloud perimeter corresponding to the perimeter of an ellipse fitted to the cloud. Following this recom-

mendation, the total cloud perimeter is computed in each layer as follows: For each labeled cloud in the 

layer, the length of the semi-major axis of the fitted ellipse is taken as the maximum distance between the 

cloud geometric barycenter and any cell that belongs to the cloud. The area of the ellipse is taken as the 

cloud area. The perimeter of the ellipse is then computed from its area and the length of its semi-major 

axis. The individual ellipse perimeters are summed to obtain the total radiatively effective cloud perimeter 

and to derive Cs by inverting Equation . Vertical profiles of diagnosed 3 C s are illustrated in Figure1c. Cs

ranges from 50 to 600m with some variability both in height and between the different cloud fields, with 

an average value of 249m. They are slightly smaller than those found by Hogan etal.( ) and Fielding 2016

etal.(2020) in the I3RC LES cumulus cloud field of Hinkelman etal.( ). Their simulation is also based 2005

on the ARMCu case, with the same forcings and domain size, but their larger resolution of (67)2 ×40m 

explains the differences.

3. Parametric Exploration of SPARTACUS

This section presents a parametric exploration of the SPARTACUS parameterization of 3D radiation. Can 

we find a set of cloud geometry parameters for which SPARTACUS predictions of CREs lie within a rea-

sonable distance from reference MC estimates of the same quantities? How accurately can a unique con-

figuration of SPARTACUS predict different radiative metrics computed in a large sample of cumulus fields 

under various illumination conditions? Does the best choice for cloud parameters match the LES-derived 

values of Section2? The High-Tune: Explorer calibration tool (Couvreux etal.,2020; Hourdin etal., ) is 2020

used in the following to answer these questions. The tool is fully described in Part I. We give here only the 

information needed to understand the calibration procedure, before presenting the results.

3.1. Setup of High-Tune: Explorer

High-Tune: explorer (htexplo) is a statistical tool that automatically explores the behavior of a model 

throughout an arbitrarily large parameter space. It is based on Gaussian process surrogates and implements 

history matching to reduce the parameter space to a sub-space of parameter vectors, or model configura-

tions, that are “acceptable” in view of a given set of predetermined reference targets. The tool automatically 

performs most of the computations but the results crucially depend on the choices made for the calibration 

setup: The parameters to adjust, the metrics that will measure the model quality, the reference target and its 

associated uncertainty, and the uncertainty associated with the model structural error.

The SPARTACUS parameters that enter the calibration process are the three parameters described in Sec-

tion2.1: the overlap vertical decorrelation length z0; the FSD of the horizontal distribution of in-cloud liquid 

water FSD; and the cloud scale Cs. The parameter ranges that define the original parameter space (a 3D 

space formed by the cartesian product of parameter ranges) were determined from numerical stability con-

straints in ecRad and other calibration experiments (not shown) in which larger ranges of parameter values 

were explored without adding value to the calibration exercise. Finally,

• z0 ranges in (50, 500) (mean LES-derived value: 189m)
• FSD ranges in (0.1, 2) (mean LES-derived value: 0.704)
• Cs ranges in (50, 1,000) (mean LES-derived value: 249m)

Three metric types were used in the calibration of SPARTACUS, all based on solar fluxes horizontally av-

eraged over the LES domain: the reflected flux at the TOA F ; the total absorbed flux in the atmosphere 

Fabs ; the atmospheric radiative effect measured at the surface which is the difference between downward 

flux at TOA and downward flux at the surface, F F . For each of these fluxes, three solar angles are used 

to explore the different mechanisms that drive the radiative effect of clouds under different illumination 

conditions. These angles were chosen arbitrarily: 0°, 44°, and 77° from zenith. Each of these nine metrics 

(three fluxes×three solar angles) are computed in eight different cloud fields selected among the 35 avail-

able cumulus fields described in Table . These eight scenes, illustrated in Figure , were chosen for their 2 2

contrasting characteristics to properly explore the distribution of available cumulus fields.
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The reference values used as targets for these 72 metrics (nine metrics×eight cloud fields) are provided by 

the MC model described in Section . The associated uncertainty is taken as the standard deviation of the 2

MC estimate, typically smaller than 0.1 .%

The structural error of SPARTACUS is unknown. In a sense, it is the error that would remain after the pa-

rameters are well calibrated. However, its characterization is a prerequisite to the calibration process, as it 

prevents the tool from rejecting configurations that predict metric values within the structural error around 

the reference target. We hence rather use the term “tolerance to error”: an acceptable distance between the 

parameterization estimate and the reference target, arbitrarily set by the modeler. Here, it is set as the third 

quartile of the distributions of relative errors between MC and SPARTACUS runs using the mean LES-de-

rived parameter values, for each type of metric and solar angle:

• for the atmospheric radiative effect at the surface (  - ), the relative tolerances to error are 3  for SZAs %

0° and 44°, and 4  for SZA 77°%
• for the absorbed flux in the atmosphere, the relative tolerances to error are 1%, 2%, and 4  respectively %

for SZAs 0°, 44°, and 77°
• for the reflected fluxes at TOA, the relative tolerances to error are set to 6%, 3%, and 4  respectively for %

SZAs 0°, 44°, and 77°

Once this setup is fixed, the htexplo tool automatically computes the following:

1. An “experimental design” is built by sampling a small number of points (around ten times , here 45 at n

the first iteration and 80 in the following ones) in the parameter space. A maximin Latin Hypercube sam-

pling method is used that maximizes the minimum distance between samples (Williamson,2015). ecRad 

is run for the sampled configurations on the eight selected cloud scenes with the three selected SZAs.

2. The chosen metrics are computed from the model outputs and used as a training set in the construction 

of emulators (one per metric, each based on a Gaussian Process). These fast surrogate models are then 

used to compute estimates (the expectation of the process) for the metrics on a large sample of points in 

the parameter space (here, 105), along with the associated statistical uncertainties (the standard devia-

tion of the process).
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Figure 2.  Maps of optical depths for the eight selected scenes. The shading uses a logarithmic scale and the black lines are the zero contours. The optical depth 
was estimated from the liquid water path field of the LES. LES, Large-Eddy Simulations.
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3. For each sampled parameter vector , the distance between emulated and reference values is computed 

for each metric  (f fk  is the kth metric). The samples where this distance is larger than a threshold for at 

least one of the Nmet metrics are removed from the parameter space. The new parameter space is called 

the Not-Ruled-Out-Yet (NROY) space. In htexplo, this distance, called the implausibility I , is defined 

as follows:

I
r f

f

f

r f d f f

( )
| [ ( )]|

( ), ,




   










 

E

2 2 2

 (4)

4.  where [ (f   is the emulator estimate, rf is the reference value, σr f,  is the uncertainty associated with the 

reference f ( ) is the statistical uncertainty associated with the emulator estimate and σd f,  is the model 

structural error. The implausibility threshold for rejecting points from the parameter space was set to 

three. This means that points were kept in the parameter space only if the distance between SPARTACUS 

and MC was closer than three standard deviations (according to all three uncertainties) for each of the 

72 metrics.

5. A new experimental design is built from a sub-sample of the parameter vectors that were not rejected at 

the previous step, and the whole procedure is repeated until the NROY space converges. With each iter-

ation, called “wave”, the uncertainties associated with the emulators decrease until convergence, since 

the sampling of model configurations that serve to build the emulators is denser (the parameter space is 

smaller and the number of sampled points is unchanged).

3.2. Reduction of the Parameter Space and Global Sensitivity Analysis

Thirteen iterations were applied, reducing the NROY space from 11.7% of the original space after the first 

wave, to 8.40% after the twelfth wave, and 8.39% after the thirteenth wave, where the process was assumed 

to have reached convergence. It would have been possible to further reduce the NROY space by decreasing 

the rejection threshold or adding new constraints (new metrics), as was done in Couvreux etal.( ) and 2020

Hourdin etal.( ). However, the aim of this study is not to determine a unique set of acceptable parame2020 -

ters but rather to analyze the structure of the parameter space and compare various configurations that are 

acceptable given the arbitrarily chosen tolerance.

Figure 3 illustrates the parametric dependency of the downward flux at the surface under the ARMCu 

eighth hour clouds at SZA 0° and 77° (two of the 72 metrics used in the calibration), obtained from the 

1,000 SPARTACUS configurations explored during the thirteen waves of history matching.

Large surface fluxes at high sun are only obtained when clouds are sufficiently heterogeneous (when FSD 

is large enough; Figure ), while the effect of heterogeneity in grazing sun conditions is less obvious (Fig3a -

ure3d). The transmitted flux at 0° is strongly related to the decorrelation length (Figure ), but the trans3b -

mitted flux at 77° does not seem driven by this parameter (Figure ). Indeed, when the decorrelation 3e

length increases, the overlap gets closer to maximum and the total cloud cover decreases. This leads to more 

energy reaching the surface, in particular for high sun. As the sun gets closer to the horizon, it is not the 

total cloud cover that matters but the effective cloud cover, projected in the direction of the sun, to which 

cloud sides contribute largely. At high sun, 3D effects (inversely proportional to cloud size Cs) lead to an 

increase in surface flux (Figure ), a signature of escape of light from cloud sides and entrapment. At low 3c

sun they lead to a decrease in surface flux (Figure ), explained by the interception of light by cloud sides. 3f

In multi-layered cloud scenes or with larger ground albedo, the entrapment effect would be stronger and the 

balance between positive and negative 3D effects as a function of SZA could be affected (entrapment leads 

to an increase of surface flux at all solar angles; Hogan etal.( )).2019

Metrics computed at different iterations in the calibration process are represented in different colors in 

Figure3, showing that part of the parameter ranges are no longer sampled after a certain number of waves. 

For instance, after the first wave (red points), decorrelation length values smaller than 180m have been ex -

cluded from the parameter space, independently of the values of the other two parameters. This is because 
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for this subrange of decorrelation length values (in which the cloud cover is large) the 0° surface flux emu-

lator predicts values that are too small compared to the MC estimate.

The implausibility matrix presented in Figure  reveals the structure of the NROY space obtained after the 4

thirteenth wave. A large number of points was sampled in the original 3D space parameter, and the largest 

implausibility computed over the 72 metrics was associated with each sampled point, thereby building 

a unique implausibility cube. The NROY space corresponds to the regions of this cube filled with values 

smaller than three after wave 13 (note that points exceeding three at earlier waves have their implausibil-

ities fixed at the value of their first excedence (when they were ruled out)). To visualize the information 

contained in this cube, it is successively projected along each of the three dimensions to produce three 2D 

maps. The upper triangle of Figure  displays projections of the number density of points belonging to the 4

NROY space. The lower triangle displays projections of the implausibility values, by taking the minimum 

value along the reduced dimension. The upper triangle gives the density of acceptable configurations, while 

the lower triangle informs on the quality of the “best” configurations.

The gray (red) zones in the upper (lower) triangle subplots represent the regions of the parameter space 

where no configuration is acceptable given the two parameter values that correspond to the pixel, whatever 

the value of the third parameter. For instance, the upper-left and lower-right subplots show that small val-

ues of the decorrelation length have been rejected, independently of the values of the other two parameters. 

This was already illustrated in Figure . Here, the plots additionally show that the set of parameter values 3
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Figure 3.  Downward flux at surface for various ecRad runs, as a function of three parameter values: (a, d) FSD, (b, e) overlap decorrelation length z0, (c, f) 
cloud scale Cs, and of solar zenith angle (a–c) 0° and (d–f) 77°. Full black horizontal lines represent the Monte Carlo (MC) reference value, dashed horizontal 
lines represent the tolerances to error. Full vertical lines represent the mean parameter value diagnosed in the LES. Different colors represent parameter sets 
sampled at different waves. FSD, fractional standard deviation of in-cloud liquid water content; LES, Large-Eddy Simulations.
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derived from the 3D LES cloud fields do not belong to the NROY space of the thirteenth wave, in particular 

due to too small value of the FSD and/or of z0.

On the upper-right subplot, we see that many (FSD, Cs ) pairs have been rejected. The pairs that lead to 

acceptable configurations of the parameterization are clearly identified: small values of Cs are paired with 

large values of FSD and conversely (although very large values of Cs were all rejected). This means that an 
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Figure 4. Visualization of the implausibility cube: NROY space density (upper triangle) and minimum implausibility (lower triangle) at wave 13. Implausibility 
is computed as the maximum over the metrics. Axes of the upper-triangle subplots are given by the parameter names on the diagonal. The (x,y) axes of the 
subplots are (z0, FSD) in row one, column two (Cs, FSD) in row one, column three (Cs, z0) in row two, column three. The axes of the lower-triangle subplots are 
the same as the axes of their symmetric subplot in the upper triangle. Black dots correspond to the average parameter values derived from the LES cloud fields. 
FSD, fractional standard deviation of in-cloud liquid water content; LES, Large-Eddy Simulations; NROY, Not-Ruled-Out-Yet.
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increase in heterogeneity can be compensated by a decrease in cloud size 

(more intense 3D effects), and that the uncertainties associated with the 

target metrics do not allow to determine which mode should be favored 

between small heterogeneous or large homogeneous clouds.

The variations of implausibility in the parameter space reveal more of

the parameterization behavior than the implausibility absolute values, 

which are highly dependent on the arbitrarily set tolerance to error

(see Equation ). However, the subplots of the lower triangle show that 4

for any configuration, there is always at least one metric that is farther 

away from its target than 1.5 times the root square sum of its uncertain-

ties, which is dominated by the tolerance to error at wave thirteen. They also show that the best config-

urations have small heterogeneous clouds rather than large homogeneous ones, associated with large 

decorrelation lengths.

3.3. Evaluation of Flux Estimates in Calibrated Configurations

The various configurations that were sampled to construct emulators from true ecRad runs are evaluated 

using scores associated with each metric and configuration. It is the error between ecRad and the reference 

MC divided by the tolerance to error. For each SPARTACUS simulation run during waves three to thirteen, 

the RMS scores are computed over all metrics (“global”), and over reflected fluxes (“TOA up”), absorbed 

fluxes (“absorption”), and surface fluxes (“surface down”) separately. Then, the configurations with smallest 

RMS scores of each category are selected as “best” configurations. They are presented in Table , along with 3

the mean LES-derived parameters. Configurations that lead to best upward TOA and best downward sur-

face fluxes are relatively similar, favoring small heterogeneous clouds. The configuration that leads to the 

better estimates of absorbed fluxes rather favors large homogeneous clouds. The configuration that leads 

to best global RMS is in between these two modes, but still selects smaller more heterogeneous clouds than 

found in the LES. The overlap decorrelation length parameter is always greater than the one diagnosed in 

the 3D cloud fields, yielding smaller cloud covers.

These four new configurations, obtained from a calibration process using only eight cloud fields and three 

solar angles, were tested on the 35 cloud fields of Section  and 11 SZAs from 0° to 77° with step 11°. The 2.3

distributions of errors are represented in Figure . The RMSEs are given in the legends for each configura5 -

tion. These numbers are different from the configuration scores as they are not divided by the tolerance to 

error. The configuration using the mean geometry parameters computed from the LES cloud fields is also 

represented.

The fluxes at TOA and surface are systematically improved compared to the configuration using the LES-de-

rived parameter values, but all calibrated configurations are slightly worse for the absorption. The absorp-

tion bias associated with the “Best global”, “Best TOA”, and “Best surface down” configurations, which all 

have small heterogeneous clouds, is always negative. It appears that most of the flux that should have been 

absorbed reaches the surface, inducing a positive mean bias in the transmitted fluxes.

To understand why small heterogeneous clouds lead to wrong estimates of the absorption, the CRE on 

absorption is analyzed for various configurations as a function of SZA in one particular cloud field. Fig-

ure6(a) shows results from the MC, “Best surface down” and “Best absorption” simulations. Three sensi-

tivity tests were performed, changing one parameter at a time, from the value corresponding to the “Best 

surface down” configuration to the value corresponding to “Best absorption” configuration, and keeping the 

two other parameters to the “Best surface down” values. Results are shown in Figure .6(b)

The “Best surface down” simulation with large 3D effects and important heterogeneity accurately reproduc-

es the absorption dependency to solar angle but with a negative bias of 2–4Wm2. Two-stream errors in 

plane-parallel homogeneous clouds absorption are around 4% on average (see Appendix ), which only A

partly explains the negative bias observed in the “Best surface down” simulation. The “Best absorption” sim-

ulation is closer to the MC reference at small SZAs, which seems to result from the compensating effects of

reduced inhomogeneity (smaller FSD increases absorption), reduced 3D effects (larger Cs  decreases absorp-

tion) and structural errors independent from cloud geometry (e.g., from the two-stream approximation). At 

VILLEFRANQUE ET AL.

10.1029/2020MS002423

12 of 19

Parameters FSD z0 (m) Cs (m)

Mean LES-derived 0.705 187 247

Best global 1.079 436 155

Best TOA up 1.646 493 119

Best absorption 0.102 294 821

Best surface down 1.469 374 113

Table 3 
Parameter Values for the “Best” Configurations of ecRad
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Figure 5.  Histograms representing the distributions of differences between ecRad and Monte Carlo (MC) estimates for 
the three metrics: (a) upward flux at TOA, (b) absorbed flux in the atmosphere, and (c) downward flux at the ground. 
Errors for all 35 cumulus scenes and eight solar angles (from 0° to 77° with step 11°) are distributed together. Each color 
corresponds to a different configuration of ecRad. The parameters values for each configuration are given in Table . 3
Color triangles represent the mean error. The root mean square distances (RMSE) are given in the legends.

Figure 6.  Absorption CRE in the SCMS 5th hour cloud field. Solid lines represent absolute values of the CRE 
and dashed lines represent errors compared to the MC reference. (a) shows the MC reference and two calibrated 
configurations (“Best surface down”: FSD=1.469, z0 =374m, Cs =113m, and “Best absorption”: FSD=0.102, 
z0 =294m, Cs=821m). (b) shows sensitivity tests, with two parameter values as “Best surface down” and one as “Best 
absorption”: “Smaller FSD”: FSD=0.102, z0=374m, Cs =113m; “Larger Cs”: FSD=1.469, z 0=374m, Cs=821m, 
and “Smaller z0”: FSD=1.469, z0=294m, Cs=113m. CRE, cloud radiative effect; FSD, fractional standard deviation 
of in-cloud liquid water content.
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SZA 77°, reducing 3D effects increases the absorption which almost entirely cancels out the structural error. 

It thus appear that the “Best absorption” configuration yields correct absorption estimates for the wrong 

reasons, that is, the wrong radiative processes.

4. Discussion and Outlook

The htexplo software enables efficient semi-automatic tuning for any aspect of a climate model. The 

“automatic” aspects of the tuning involve implementation of well-developed techniques from the un-

certainty quantification and machine learning communities: Using Gaussian processes to quickly lo-

cate those regions of parameter space that are compatible with reference data sets. Yet htexplo is not

a black box tuning software, and is designed as a tool to be harnessed by an expert physicist to assist 

with tuning. The physicist must define the parameters, metrics, references, and their tolerances to error 

(if the structural error of the model is unknown). They must interpret the results and then perhaps 

adapt the tuning (introducing new metrics, adjusting tolerances, recognize compensating errors etc):

htexplo cannot, alone, measure the quality of a model. In this section, we first discuss the choices that 

conditioned the calibration procedure of Section , and then some implications of the main results of 3

our work.

A fundamental aspect of the tuning strategy advocated in this series of papers is that sources of errors

related to different aspects of the model can be disentangled, while extending the modeler’s capacity

of analysis and level of comprehension. In Part II, this is achieved by performing a first calibration

step using well-understood study cases in the LES/SCM framework to constrain the parameter space 

to values compatible with process-based metrics, before tuning the 3D global model. It is a way to 

ensure that the CRE targeted in the 3D calibration is obtained for the right clouds. The focus of this 

paper (Part III) is on getting the right CRE for the right RT. This is achieved by offline calibration of 

the RT parameterization, in which the cloud fraction and LWC profiles input to ecRad are computed 

directly from the 3D cloud fields that are acted upon by the reference MC model, instead of being 

parameterized.

We went one step further in our effort to disentangle potential sources of errors, by separating internal 

aspects of the radiative parameterization. Our choice of reference has determined the aspects of the param-

eterization that were allowed to compensate each other. On the one hand we chose to exclude the question 

of the representation of optical properties of clouds in order to focus on the representation of transport and 

cloud geometry, by computing the reference MC estimates using the same optical properties as ecRad. On 

the other hand, we chose to allow internal compensating errors between cloud geometry and pure RT by 

targeting MC simulations that use detailed Mie phase functions instead of a delta-scaled two-stream version 

of the MC model. We also chose to calibrate all the geometry parameters together, although 1D geometrical 

effects could have been treated independently from the effects of horizontal transport. These choices were 

primarily driven by the inextricable aspect of the light transport formulation and the treatment of cloud 

geometry effects in the SPARTACUS RT model.

The choice of metrics is also a crucial aspect of the calibration setup. Here, we have used three metrics that 

are not independent from each other: the (known) incoming flux at the TOA is entirely distributed into 

reflected, absorbed by the atmosphere and absorbed by the surface fluxes. However, adding a metric that 

is a combination of the other two further constrains the parameters when each metric tolerance to error is 

smaller than the sum of the tolerances associated with the other two metrics.

The value of the tolerances to error for the different metrics were chosen here so as to reject the SPART-

ACUS configurations that are much less accurate than using the LES-derived parameter values. Other

choices could have been made such as using a bulk value corresponding for instance to the tolerance of 

a climate model to local radiation errors, or to the radiation error that would result from a perturbation

of the cloud fraction profiles typical of the errors found in cloud parameterizations. The results of the 

calibration are sensitive to the tolerance to error, therefore it should be set carefully, in concordance 

with the objectives of the tuning exercise. We also note that error tolerance can (and should) be adapt-

ed throughout a tuning exercise. We may find that our tolerances were too small, the model could not

get close enough to the reference metrics, and the whole parameter space is ruled out. We should then 
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increase our tolerance to error. We may also find our tolerances are too large (if we were being conserva-

tive at the beginning of the exercise), and that many of the models compatible with those tolerances are,

in fact, poor relative to others in our later waves. It could be argued that adapting tolerance to error by 

observing the results of each wave will lead this tolerance to converge towards the true structural error. 

But the “true” structural error is not trivial to define; It is a modeler’s judgment and likely has complex

dependencies across metrics. It could be thought of as the error that remains once the parameters have 

been adjusted to remove parametric errors, but we have seen here that this “best” adjustment depends

on the chosen metrics. Even if a model could be reduced to only one metric, say the absorption, the 

definition of the structural error would still depend on the modeler’s appreciation: Is it preferable to 

produce the best possible absorption estimates even if the representation of internal processes seems 

wrong as in the “best absorption” configuration? Or would we rather have a model that behaves slightly

worse but for a more physical representation of the processes? In this example, the structural error of 

the former model would be smaller than that of the latter. With htexplo, we provide a framework within 

which modelers become able to continuously question, define, learn, and explore the structural error 

of their model.

Beyond its implication for the calibration of SPARTACUS, the fact that the “best” parameter selected by 

htexplo do not match the LES-derived parameters questions the conceptual constraints that surround 

climate model development and tuning. The main goal of parameterization development is to derive

functional forms that can be trusted to provide accurate source terms for the explicitly resolved variables

of the model over a wide range of atmospheric regimes (including regimes that have not been observed 

yet but might appear in different climates). To achieve this, it is essential to base our developments on 

our understanding of physical processes. However, we argue that some flexibility should be allowed in

the choice of parameter values. Results reported by Bastidas etal.( ) and Hogue etal.( ) also 2006 2006

support this idea. They show that free parameters should be set to different values through different land 

surface models even though their physical interpretation is the same. Their conclusions were limited to 

so-called “functional” parameters that cannot be associated with direct measurements. We argue that 

observational constraints on “physical” parameters should also be alleviated. Indeed, it is an effective 

value of the parameters that is needed in the models. The calibration strategy advocated here is funda-

mentally a way to determine possible values for these effective parameters. An effective value laying too

far from observations (e.g., outside the distribution of observed values) could however indicate that the

physical images that supported the parameterization development are wrong or that important processes 

are missing.

Eventually, the improvement of SPARTACUS was obtained by calibrating a mean parameter, thereby ne-

glecting parameter variations with height and between cloud scenes. This was probably only possible be-

cause all cloud fields used here represent cumulus clouds, with relative resemblance between the cases, 

although both marine and continental clouds were represented. An interesting follow-up would be to repeat 

this exercise with other cloud types, starting with other boundary-layer clouds such as stratocumulus and 

transition scenes involving both cloud types. A possible diagnosis of htexplo might then be that a single 

parameter is not able to represent different clouds. This would mean that a sub-parameterization should 

be developed to make this parameter depend on atmospheric conditions. Such parameterizations exist for 

example to predict cloud perimeter length in Fielding etal.( ), or the degree of overlap in for example, 2020

Sulak etal.( ). New parameters appear in these formulations, which can in turn be calibrated using the 2020

same procedure as described in this work.

Appendix A: Estimation of Various Sources of Errors in ecRad

Various aspects of the radiation scheme were identified in this study as potential sources of errors in ecRad 

flux estimates. The first category (a) groups the approximate optical properties and approximate RT model, 

that is, the two-stream equations and the delta-scaling approximation. A second category (b) relates to the 

degree of complexity in the representation of cloud geometry and horizontal transport. A third category 

concerns the errors due to neglecting inter-level and inter-scene variability of the parameters that describe 

cloud geometry. The last category (d) is the choice of the absolute values for these parameters.
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Errors related to some of these aspects have been documented throughout the literature (see e.g., Barker 

etal.( ;2003 2015) for categories (a) and (b)), although not always from the same metrics or clouds, which 

makes quantitative comparisons difficult. In our study, these different errors have been computed in a uni-

form way from various numerical experiments. Plane-parallel homogeneous clouds of several liquid water 

contents (yielding optical depths of 0.1, 0.25, 0.5, 1, 2.5, 5, 25, 50, and 100 at 800nm) were used to estimate 

errors of category (a). The cumulus fields of Section  were used for the three other categories. Each 2.3

plane-parallel and cumulus cloud field was combined into eight illumination conditions (sun at 0°–77° 

from zenith with step 11°). The results are displayed in Table .A1

In category (a), errors were diagnosed from different configurations of the Monte Carlo (MC) model: using 

detailed Mie data or the approximate SOCRATES model for cloud optical properties, and using detailed Mie 

phase function or the approximate Henyey-Greenstein (HG) phase function that only depends on the asym-

metry parameter , combined with the -Eddington approximation that is also used in ecRad. The difference g δ

between the MC “as ecRad” (approximate optical properties and approximate phase function) and ecRad is 

interpreted as the error related to the two-stream model.
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(i) Experiment (ii) Reference (iii) Model

(iv) TOA up (v) Absorbed (vi) Surf. down

RMS bias RMS bias RMS bias

(a) Experiments in plane parallel homogeneous clouds

(1) SOCRATES MC exact MC SOCRATES 1.1 0.8 10.8 10.5 1.9 1.5

(2) -Eddington MC exact MC -Eddington 11.1 4.6 13.1 4.5 11.8 4.6δ δ

(3) two-stream MC as ecRad ecRad two-stream 5.4 0.3 15.0 9.1 4.3 2.2

Transport (2+3) MC SOCRATES ecRad two-stream 8.3 3.2 15.2 4.4 7.0 1.0

Total (1+2+3) MC exact ecRad two-stream 8.6 4.1 17.8 14.5 5.8 0.7

(b) Experiments in cumulus, MC versus ecRad 1D and 3D solvers, parameters =( , FSD, λ α Cs)

PPH max ovp MC SOCRATES 1D, =(1, 0, ) 23.4 20.9 54.2 53.5 28.6 27.0λ 

Tripleclouds (1D) 1D, ( , ) LES 29.3 23.0 23.8 18.9 23.7 15.1λ z case

SPARTACUS (3D) 3D, ( , ) LES 22.7 20.0 20.0 10.4 18.3 14.4λ z case

(c) Experiments in cumulus, ecRad SPARTACUS, with LES-derived profiles versus averaged parameters

z-averaged ( , ) LESλ z case  LES 1.4 0.1 1.6 0.4 1.4 0.1

case-z-averaged ( , ) LESλ z case
 LES

3.7 0.6 3.5 0.4 3.6 0.4

(d) Experiments in cumulus, MC versus ecRad SPARTACUS with calibrated parameters (see Section )3

Best global MC SOCRATES  from htexplo (see Table )3 8.3 2.7 29.1 28.1 10.2 7.2

Best TOA up 11.3 8.5 33.3 32.6 14.4 12.8

Best absorption 17.9 12.0 22.1 18.8 14.9 6.3

Best surface down 9.2 0.4 28.0 26.8 9.6 5.1

For each pair of reference computation (ii) / test approximation (iii), relative errors on the cloud radiative effects on TOA upward (iv), absorbed (v), and surface 
downward (vi) fluxes are quantified. For each column, the RMS and mean bias are first computed independently for each solar angle over the different cases, 
then RMS and mean bias are weighted by the cosine of the solar angle, and averaged over the eight SZAs. Only data points where reference CRE > 2Wm2 are 
used to avoid division by zero. Only solar angles where at least nine data points were available are used in the cosine-weighted average. The table subsections 
concern: (a) errors related to non-geometrical effects of clouds, (b) ecRad errors for different solvers, with increasing complexity in the representation of
geometrical effects, (c) errors related to the neglect of parameter variations with height and cloud field, (d) ecRad errors for different choices of cloud-geometry 
parameters, output from the calibration exercise of Section .3

CRE=total sky - clear sky. Relative error =100×(model-ref)/ref. RMS=r  r fields
2

. bias= r fields.

MC exact: detailed Mie optical properties and phase function.

MC SOCRATES: parameterized optical properties and detailed Mie phase function.

MC -Eddington: detailed Mie optical properties and HG -Eddington phase function.δ δ

MC as ecRad: parameterized optical properties and HG -Eddington phase function.δ

Table A1 
Relative Errors [%] for Different Aspects of the ecRad Radiative Transfer Scheme
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In category (b), errors were diagnosed from different configurations of ecRad using the 1D solver Triple-

clouds (Shonk & Hogan, ): In plane-parallel homogeneous maximum overlap mode (PPH max ovp) by 2008

setting the overlap parameter to one and the heterogeneity parameter to zero, and in heterogeneous expo-

nentional random mode (Tripleclouds (1D)) by setting both the overlap and the heterogeneity parameters to 

LES-derived values; as well as the the 3D solver SPARTACUS with LES-derived parameters. These different 

ecRad estimates were compared to the reference MC model using approximate optical properties and de-

tailed phase functions (also used as the reference in Section ). Figure  shows the error distributions for 3 A1

the various solvers.

In category (c), errors were diagnosed from the SPARTACUS solver parameterized with LES-derived values 

averaged along the vertical dimension (z-averaged) and on both the vertical dimension and the different 

cloud fields (case-z-averaged), compared to the SPARTACUS solver parameterized with scene-dependent 

profiles of parameters as derived from the LES.

In category (d), errors were diagnosed from various configurations of the SPARTACUS solver, with param-

eter values output from the calibration process.
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Figure A1.  Histograms representing the distributions of differences between ecRad and MC estimates for the three 
metrics: (a) upward flux at TOA, (b) absorbed flux in the atmosphere, and (c) downward flux at the ground. Each 
histogram represents the distribution of 280 data points: 35 scenes×8 solar zenith angles (from 0° to 77° with step 11°). 
Each color corresponds to a different configuration of ecRad. PPH max ovp corresponds to homogeneous clouds with 
maximum overlap and no 3D effects. Tripleclouds corresponds to heterogeneous clouds with FSD and  vertical profiles α

as diagnosed in the 3D LES field, without 3D effects. SPARTACUS is as Tripleclouds but with 3D effects, with Cs vertical 
profiles as diagnosed in the 3D LES fields. The mean error is represented by colored triangles. The RMSEs are given in 
the legends. FSD, fractional standard deviation of in-cloud liquid water content; LES, Large-Eddy Simulations.
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Data Availability Statement

The complete version of htexplo that was used for this paper is publicly available via a Subversion through 

“svn check out http://svn.lmd.jussieu.fr/HighTune.” Note, however, that this tool is a new research tool, 

and, as such, is still evolving. Version 1.4.0 of the ecRad package is freely available under the terms of the 

Apache License Version 2.0. This paper uses a prior version (1.3.0) available upon request under the terms 

of the OpenIFS license. No major modification was made to the ecRad radiation code between versions 1.3.0 

and 1.4.0. The source code of the Monte Carlo model that is used as a reference in this paper is available 

under the terms of the GNU General Public License. The scripts and data that were used to produce the 

figures and tables are available under https://doi.org/10.14768/medd-xa16.
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