
1. Introduction

Atmospheric global or regional circulation models used either for numerical weather prediction (NWP) or 

climate studies encompass a dynamical core and a physical component. The dynamical core computes the 

spatio-temporal evolution of atmospheric state variables by solving a discrete version of the fluid dynamic 

equations. The physical component quantifies the impact on the resolved variables of radiative, thermo-

dynamical, and chemical processes, as well as dynamical processes that occur at scales smaller than the 

computational grid. These processes are handled by a suite of sub-models, most often referred to as param-

eterizations, which provide source terms in the resolved-scale equations. Parameterizations (e.g., turbu-

lence, convection, radiation, microphysics) are often based on a mixture of physical principles and heuristic 

description of the involved processes, of their interactions and of their impact on the larger resolved scales. 

Although it is difficult to trace back the origin of the term “parameterization” in climate modeling, it se-

mantically points to the fact that the sub-models summarize the processes as functions of the model state 

vector x (typically the value of zonal and meridional wind, temperature, and water phases at each point of

the three-dimensional [3D] model grid) that depends on some free parameters. These free parameters arise 

from the simplification of the complex nature of the subgrid processes (e.g., assuming a bulk thermal plume 

instead of a population of plumes, stationarity). The atmospheric model can be summarized as
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Abstract  The development of parameterizations is a major task in the development of weather 

and climate models. Model improvement has been slow in the past decades, due to the difficulty of

encompassing key physical processes into parameterizations, but also of calibrating or “tuning” the 

many free parameters involved in their formulation. Machine learning techniques have been recently 

used for speeding up the development process. While some studies propose to replace parameterizations 

by data-driven neural networks, we rather advocate that keeping physical parameterizations is key for 

the reliability of climate projections. In this paper we propose to harness machine learning to improve 

physical parameterizations. In particular, we use Gaussian process-based methods from uncertainty 

quantification to calibrate the model free parameters at a process level. To achieve this, we focus on the 

comparison of single-column simulations and reference large-eddy simulations over multiple boundary-

layer cases. Our method returns all values of the free parameters consistent with the references and any 

structural uncertainties, allowing a reduced domain of acceptable values to be considered when tuning the 

three-dimensional (3D) global model. This tool allows to disentangle deficiencies due to poor parameter 

calibration from intrinsic limits rooted in the parameterization formulations. This paper describes the tool 

and the philosophy of tuning in single-column mode. Part 2 shows how the results from our process-based 

tuning can help in the 3D global model tuning.
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where  stands for the discretized form of  for the source term provided by the 

parameterization of the process  and p λp for the associated free parameters. This equation may however be too 

simplistic, as, in reality, a given parameterization often depends on intermediate variables provided by other 

parameterizations (e.g., cloud fraction used in radiation, turbulence variance used in the cloud scheme) and 

computes additional prognostic variables (e.g., turbulence kinetic energy). Nevertheless, with this simplified 

framework, improving models through parameterization development means both to propose more appropri-

ate functional forms  and to identify acceptable or better values of the free parameters λp .

Among the different parameterizations, those involved in the representation of turbulence, convec-

tion, and clouds still challenge state-of-the art NWP and climate models (Bony et al., ; Holtslag 2015

etal.,2013; Klein etal.,2017; Nam etal.,2012; Nuijens etal.,2015; Randall etal.,2003). Innovative and 

diverse concepts and ideas have been proposed over the past decade to improve this representation (Rio

etal.,2019). A detailed understanding of the physical processes leading to the formation of low-level 

clouds can be obtained by large-eddy simulations (LESs) (Guichard & Couvreux, ), which repro2017 -

duce, with high fidelity, the turbulent dynamics within the clouds (e.g., Neggers etal., ; Siebesma 2003a

& Cuijpers, ; Wang & Feingold, ). LES are therefore increasingly used to derive and evaluate 1995 2009

the conceptual models at the root of boundary-layer and shallow cloud parameterizations. The choice 

of the parameterization free parameters is also crucial for the simulation of clouds. Their calibration or

“tuning” consists in searching for acceptable or optimal values of these parameters, such that the asso-

ciated model configuration has a realistic behavior under various conditions and compared to a suite of

observations (Mauritsen etal., ). Calibration is therefore a fundamental aspect of NWP or climate 2012

model development (Bellprat etal.,2012; Duan etal.,2017; Schmidt etal.,2017). However, it is often con-

ducted without much control on the way it modifies the parameterization behavior at the process level as 

the calibration focuses more on regional or global constraints, such as the radiative balance of the Earth 

System for climate models, or performance metrics (e.g., root mean square error, skill scores) for NWP 

models. Hourdin etal.( ) compile the tuning strategies of several climate groups and emphasize that 2017

most of the parameters used to tune climate models (droplet size, fall velocity, entrainment rate) are re-

lated to clouds (see also J. C. Golaz etal.,2013), that is, the most uncertain processes that affect radiation, 

the primary engine of the atmospheric circulation.

Given the societal needs for reliable climate simulations and weather forecasts, the progress achieved by 

the global atmosphere modeling community has been found slow (Jakob,2010). Several systematic errors in 

state-of-the-art models have been modestly reduced, such as those regarding the surface temperature over 

the eastern oceans (Richter, ), the rainfall distribution in the Tropics (Flato etal., ), the variability 2015 2013

of the liquid water path (Jiang etal.,2012), and the low clouds (Nam etal.,2012). The deadlock of the cloud 

parameterization, highlighted by Randall etal. ( ), is still an issue today. This too slow improvement 2003

of models can be attributed to remaining deficiencies in the structure of the parameterization itself (the 

function ) but also to the calibration of model parameters that can be considered as a bottleneck in model 

development. On the one hand, the calibration may not be done efficiently enough, and, on the other hand, 

tuning may induce error compensations that contribute to slow model development. Indeed, a new model 

development usually starts with a model score degradation by breaking this compensation, as often expe-

rienced in the weather prediction centers where strong weight on well-established metrics slows down the 

implementation of new model development in the operational version (Sandu etal., ).2013

Various avenues have been proposed to get around these difficulties and accelerate climate model improve-

ment. A first avenue seeks to exploit the high resolution, explicitly resolving convection, to reduce the 

number of involved parameterizations. With the recent increase of computer power, it is nowadays possible 

to run global kilometer-scale resolution simulations over a few months (Satoh etal., ; Stevens 2008 2019, 

etal.,2019). However, the explicit simulation of the fluid dynamics associated with the life cycle of a cu-

mulus requires grid resolution of the order of several tens of meters. Such resolution will not be accessi-

ble in the foreseeable future for climate change projections which require simulations of the global Earth 

System covering at least several hundreds of years (model spin-up plus transient simulations in response 

to anthropogenic forcing). The super-parameterization approach (Randall etal., ) proposes an inter2003 -

mediate pathway by introducing a convection-permitting model in each column of a conventional general 

circulation model (GCM) to replace the deep convection parameterization (Khairoutdinov etal.,2005). The 
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use of a large-eddy model instead of a convection-permitting model in such framework further removes 

the boundary-layer and shallow convection parameterizations (Grabowski, ; Parishani etal., ). A 2016 2017

second avenue recently explored the potential of machine learning approaches, which ultimately envisions 

to replace some parameterizations by neural networks or similar algorithms, properly trained on convec-

tion-permitting model simulations or superparameterized GCM (Brenowitz & Bretherton, ; Gentine 2018

etal., ; Krasnopolsky etal., ).2018 2013

A third proposition consists in retaining parameterizations in models but adjoining new tools relying on 

machine learning to accelerate model development. This choice is motivated by the fact that parameteri-

zations summarize our current understanding of the dynamics and physics of atmospheric processes and 

offer the power of interpretation, crucial to build our confidence in the extrapolation beyond observed 

conditions realized by any climate projections. The ESM2.0, proposed by Schneider etal.( ), belongs 2017

to this category. The authors defend that the major progress in Earth-System model development should 

come from a more systematic use of global observations and high-resolution simulations thanks to ma-

chine learning algorithms. They also underline the importance of climate model calibration. In particular, 

they stress that their new Earth System modeling framework comes with challenges such as developing 

innovative learning algorithms, identifying the best metrics, combining information from observations and 

high-resolution, innovating in the design of parameterizations to more easily benefit from new observations 

or evolution of the models (e.g., refinement of resolution).

Along the sa e, in this paper, a new approach which allows the development of the 

parametrizatio ation to be tackled at the same time. We argue that a major slowdown of

model improve e difficulty to clearly identify parameterization deficiencies and to proper-

ly disentangle t herent calibration of their adjustable parameters at the process and global 

scales. It is like scale parameterization improvements are often hidden by the unavoidable 

full model re-tu  to maintain a reasonable radiative balance or acceptable scores. In the pro-

posed approach, rning is harnessed in a principled way to calibrate parameterizations at pro-

cess level. We pro re systematic use of the multi-case comparison between single-column model 

(SCM) and LES to e and calibrate parameterizations. Such a systematic use is not feasible however 

without more objecti  automatic methods than the traditional trial/error approach used to fix param-

eter values during the meterization development. Indeed, this trial/error approach is only applicable to 

one piece of a particula arameterization and one or two relevant cases at most. Here, we aim at assessing a 

set of parameterizations  for a series of test cases, which can be formalized as the question of the existence 

of a sub-space of the parameters λp that allows to match metrics between SCM and LES results for the series 

of cases, within a given tolerance to error.

Hourdin etal.( ) reviewed the general practice for climate model calibration and proposed three differ2017 -

ent levels of calibration in a model development: a first calibration at the level of individual parameteriza-

tions, then a calibration of each component of the Earth System model and eventually a calibration of the 

full Earth System model. Distinguishing those three levels may avoid compensating errors that could arise 

if the calibration is only done at the last level. In this paper, we propose a methodology to address the first 

phase, that is, the process-level calibration and defend that it can be part of the elaboration of a well-defined 

calibration strategy based on solid physical and statistical methodologies. By doing so, we tackle model de-

velopment and parameter calibration together rather than independently as currently done for most climate 

model development.

Machine learning has already been proposed to calibrate free parameters (e.g., ensemble Kalman filters 

as in Schneider etal.[ ]). The methodology retained here for model calibration uses history matching 2017

with Gaussian processes. History matching is an efficient way to explore and reduce the domain of free 

parameters λp and document how a model physics, namely the suite of functions , behaves within this 

domain. Williamson etal.(2013) applied history matching to tune the Hadley Climate Model and stressed 

its advantage: it accounts for the various sources of uncertainties in assessing the compatibility of the mod-

el with the reference: namely the reference uncertainty itself, the uncertainty introduced by the Gaussian 

process representation of the parameterization, and the intrinsic ability of the model to represent the ref-

erence (often referred to as structural error or model discrepancy). History matching inherently deals with 
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the overconfidence issue, which emerges when model calibration is addressed as an optimization problem 

(Salter etal., ). It has been widely used to calibrate models in astrophysics (Vernon etal., ), epide2019 2010 -

miology (Andrianakis etal., ), and hydrocarbon reservoirs (Craig etal., ). It has been applied to 2017 1996

climate models (Williamson etal., ) and is starting to be used to find biases in models (McNeall 2015 2017, 

etal., ).2020

Whilst history matching has been applied to calibrate 3D models, it has not been harnessed for process-level 

tuning, as we advocate here through application to SCM/LES comparison. The SCM approach provides con-

fidence in the model's ability to represent some of the key processes whereas a direct calibration of the 3D 

global model targeting large-scale constraints may hide compensating errors (as discussed in Williamson 

etal.,2017). SCM calibration is able to reduce the domain of the free parameters for a parameterization, 

information that can be used for efficiently calibrating the full 3D global model (as we demonstrate in Part 

II). The breakthrough proposed here was only possible thanks to a strong collaboration between the uncer-

tainty quantification (UQ) community and the atmospheric modelers.

The present paper focuses on parameterizations involved in the representation of boundary-layer clouds. 

Indeed, well-established case studies exist for such regimes and LES have been shown to realistically repre-

sent the main processes. However, this methodology can be easily expanded to other parameterizations and 

other objectives in the Earth System.

The paper is organized as follows: the next section describes the SCM/LES framework highlighting its ad-

vantages, recalls the different steps used in the development of a parameterization and details the new 

philosophy advocated here. Section3 presents the statistical tool, with a focus on its philosophy and its main 

ingredients. Section  presents a guideline for its use based on a simple illustration. The paper ends with 4

conclusions in Section . A companion paper (Part II) illustrates the significant advances in model develop5 -

ment offered by this tool. It exploits process-based calibration for model development and shows how this 

tool provides guidance for the tuning of a 3D global model.

2. A Systematic Use of the SCM/LES Comparison

Although observations, especially combinations of observations, nowadays provide detailed information at 

high temporal and spatial resolution on the characteristics of convection and clouds (Bouniol etal.,2016; 

Kumar etal., ; Masunaga, ; Masunaga & Luo, ), their use for process-level analysis is still 2015 2012 2016

hampered by the difficulty of (i) comparing model output to what the satellite measurements exactly sam-

ple (although the model to satellite approach with simulators partly resolves this issue) and (ii) identify-

ing the physical processes responsible for such characteristics. Here, we promote the use of Large-Eddy 

Simulations for the following reasons. LES have the advantage of providing coherent 3D fields character-

izing the dynamical and thermodynamical state of the atmosphere. Of course, LES models include turbu-

lence and microphysics parameterizations and thus contain modeling uncertainties, but they have been 

shown to reproduce the turbulent dynamics of the clouds with high fidelity (e.g., Heus etal.,2009; Neggers 

et al., 2003a). As a result, LES have become a central tool in the development of parameterizations of

convection and clouds. Their analysis has helped in building the conceptual models behind several param-

eterizations (e.g., Neggers etal., ; Rio etal., ). LES are also used for the evaluation of the param2002 2010 -

eterizations in particular those involved in the representation of boundary layers and shallow clouds (e.g., 

Ayotte etal.,1996; Caldwell & Bretherton,2009; J. C. Golaz etal., ; Hourdin etal., ; Neggers,2002 2002 2009; 

Neggers etal., ; Pergaud etal., ; Rio & Hourdin, ; Rio etal., ; Siebesma etal.,2004 2017, 2009 2008 2010 2007; 

Suselj etal., , 2013 2019; Tan etal.,2018).

For their evaluation, parameterizations are often tested in a single-column framework, particularly relevant 

for global circulation model parameterizations, which are fundamentally 1D. SCMs are built by extracting, 

from a 3D model, a single atmospheric column, which integrates the same set of subgrid parameterizations 

(boundary-layer, shallow convection, deep convection, and microphysics schemes) and is run in a con-

strained large-scale environment (M. Zhang etal., ). The state vector of the SCM simulation is then a 2016

restriction to one column xc of the full 3D state vector  and Equation  reduces to Equationx 1 2. The dynam-

ical term  becomes a source term  specified as a function of time and altitude ; we however discard z
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this dependency in the notation for simplicity. It can also depend on the column full state vector, , if

for instance, the large-scale advection is separated between a prescribed horizontal advection and a verti-

cal advection computed as -wxc/z, where w is an imposed vertical velocity. During the SCM integration, 

some parameterizations can be deactivated in which case the corresponding source term is either neglected 

or included in the forcing . It is the case for instance when the radiative heating is imposed rather than 

being computed interactively by the model radiation scheme or when turbulent surface fluxes are imposed 

rather than computed by the model bulk parameterizations. What really matters in the SCM/LES approach 

is that both models use the exact same initial and boundary conditions and forcing terms. In a simplified 

formalism, the SCM thus corresponds to



  
 activated

( , ) ( )c
p c p c c

p pt
    (2)

and the LES to


 



*
( ) ( )c

y
y y

t
  (3)

with

  ( 0) ( 0)cx t y t (4)

where y stands for the full LES state vector,  to the LES model equations (w h include the LES pa-

rameterizations),  to the horizontal-domain average of the LES state vector and   provides a 3D field but 

consists of the same forcing as the SCM,  applied identically on each individual column of the LES. The 

SCM/LES framework thus provides a rigorous comparison between both simulations, as it removes the un-

certainties, which may arise from different initial conditions or large-scale forcing when directly comparing 

SCM to observations. This constrained framework also avoids the need to disentangle parameterization 

contributions from their coupling with the large-scale dynamics. Another important aspect of the method 

is that SCM simulations are computationally very cheap. The joint utilization of LES and SCM was first 

advocated by Randall etal.( ) and Ayotte etal.( ) and has been, since then, widely used within the 1996 1996

Global Energy and Water Exchanges (GEWEX) Cloud System Study (GCSS; Browning etal.( ) commu1993 -

nity, now renamed the Global Atmospheric System Studies, GASS, community). One of the most important 

legacies of this group for the atmospheric modeling community is an ensemble of test cases that connect 

observations, LES and SCM, and which sample many typical situations over the globe, thought to be of im-

portance for the climate system (e.g., Brown etal.,2002; Duynkerke etal.,2004; Siebesma & Cuijpers,1995). 

As such, this framework has been increasingly used in model development (e.g., Gettelman etal.,2019; 

Hourdin etal., ; Roehrig etal., ), all the more so as SCM simulations have been shown to 2013 2020, 2020

reproduce uniquely the behavior of their GCM justifying the use of SCM simulations for improving weather 

and climate models (Gettelman etal., ; Hourdin etal., ; Neggers, ).2019 2013 2015

Traditionally, parameterizations are often tested over a few specific cases for which high-resolution simu-

lations are available (e.g., Ayotte etal., ). Recently, the importance of using a wide benchmark of cases 1996

covering the different regimes encountered in reality instead of only a limited number of cases has been 

stressed (e.g., Neggers etal., ). We also highlight here the importance of using an extensive ensemble 2012

of cases. The use of multi-case is indeed essential for exploring the various degrees of freedom of the pa-

rameterization package. A stable boundary-layer case will constrain the turbulent diffusion; the combina-

tion of cloud free and cumulus topped convective boundary layers will ensure that cloud cover is obtained 

for a good representation of convection; transition cases from stratocumulus to cumulus will ensure the 

extension to stratocumulus regimes, etc. Combining multi cases and multi metrics is a much more robust 

assessment of model performance as also highlighted by Neggers etal.( ). To better use multi-cases, 2017

one important technical aspect is a common definition, in a predefined acknowledged format, for the de-

scription of the setup of reference cases, to be used both to perform SCM simulations or LES. This definition 

should include the description of the initial profiles and large-scale forcing but also contain information 

on the configuration to be used (e.g., the type of surface boundary conditions, the existence of any nudging 
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toward reference vertical profiles, the way large-scale forcing are provided). An international initiative is 

ongoing to agree on the description of the format for this definition file. Such a standard format to define 

cases will ease the realization of cases by any model and facilitate the share of new cases. The importance of

creating libraries of high-resolution simulations representing different climate is another important aspect 

already identified as a goal by the GCSS community and stressed in Schneider etal.( ). A common for2017 -

mat and the libraries of LES are an important pre-requisite for the tool presented here. In addition, both will 

contribute to bringing the process-scale community and the community developing global models more 

closely together.

When comparing SCM and LES, the modeler has to decide which metrics to consider. Various types of

metrics can be used. One can directly compare components of the SCM state vector xc to their equivalent in 

LES, the horizontal domain-average state vector  (e.g., vertical profiles of potential temperature, specific 

humidity, and less often wind components). Assessing the ability of the parameterizations to reproduce the 

time evolution of x c for a given forcing is indeed the ultimate goal. By doing so, one not only tests the behav-

ior of one particular parameterization but also its coupling with the other parameterizations activated in the 

SCM. This may make the determination of the behavior of the targeted parameterization more difficult and 

can hide compensating errors: for example, a given temperature turbulent flux can be obtained by different 

contributions from organized structures and small-scale turbulence when represented by two different pa-

rameterizations such as in the Eddy-Diffusivity Mass-Flux framework (Hourdin etal., ; Neggers,2002 2009; 

Pergaud et al., ; Siebesma et al., ). Another type of metrics targets parameterization-oriented 2009 2007

variables, such as mass fluxes, heating source associated with one part of the motion only, subgrid-scale 

distribution of temperature or water, cloud vertical structure, updraft vertical velocity, area fraction or en-

trainment, and detrainment rates. The metric, from the SCM point-of-view, is no-longer derived from the 

model state variables but corresponds to a variable internal to the parameterizations. However, additional 

uncertainty arises from the way such variables and associated metrics can be derived from LES. For exam-

ple, clouds can be characterized in an LES as all the grid cells containing condensed water (e.g., Siebesma & 

Cuijpers,1995). Combined with thresholds on the vertical velocity, cloudy updrafts can be separated from 

cloudy downdrafts. The analysis of the joint distribution of variables or the use of ad-hoc passive tracers can 

also be used in the LES to identify objects relevant with the conceptual model of the parameterization (e.g., 

Brient etal.,2019; Chinita etal.,2018; Couvreux etal., ; Rio etal., ). Such parameterization-orient2010 2010 -

ed diagnostics have helped in the refinement of the conceptual model at the root of the parameterization 

(e.g., Jam etal., ; Rio etal., ; Rochetin etal., ). However, a question arises if such diagnostics 2013 2010 2014

should also be used as metrics in the calibration process. Answering this question on the relative impor-

tance to give to one type of metrics or another requires efficient algorithms, as the one proposed here, to 

explore the various options. Note also that using state vector-based metrics on a large set of cases that are 

more or less sensitive to one aspect of the parameterization may help avoid the error compensation issue.

In line with Neggers etal.( ), we advocate that, although not a new approach, the power of SCM/LES 2012

comparisons is largely underestimated and under-exploited. Applying history matching to this comparison 

is a way to fully take advantage of the SCM/LES on a large multi-case ensemble and explore whether there 

exists a sub-space of the parameter space for which the SCM is able to reproduce a series of LES simulations 

within a given uncertainty. Note that the metrics can be different from one case to the other. This tool offers 

the possibility to revisit the different intercomparison exercises documented in the literature and to benefit 

from this rich database still underused.

Eventually, a point that becomes crucial when using LES for parameterization evaluation and tuning is the 

assessment of LES reliability and its uncertainties. Although it has been shown, through the comparison 

to observations, that LES is able to correctly reproduce boundary-layer processes and shallow clouds (Cou-

vreux etal., ; Heus & Jonker, ; Neggers etal., ), LES, as in many models, come with uncer2005 2008 2003b -

tainties associated to the advection scheme and the parameterizations still active in such simulations con-

cerning small-scale turbulence, microphysics, radiation, and surface fluxes. Sullivan and Patton( ) have 2011

shown that a horizontal resolution of a few tens of meters for convective boundary layers is enough to get 

convergence for the mean, fluxes and variances but 10 m resolution is needed in order to get convergence 

on skewness. The sensitivity of LES of shallow convection to resolution, size of the domain, subgrid model, 

and advection scheme has been widely investigated (Brown,1999 2011; Matheou etal., ; Pressel etal.,2017; 
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Wurps etal., ; Y. Zhang etal., ). In particular, it has been shown that most of the ensemble-aver2020 2017 -

aged turbulence statistics are reasonably insensitive, allowing one to use LES results to develop and evaluate 

convection parameterizations. However, some characteristics of the cloud fields (e.g., size distribution of

individual clouds) are more sensitive to resolution, advection scheme or subgrid-scheme (Brown,1999; 

Pressel etal., ; vanZanten etal., ). For example, LES at 5–10 m vertical resolution still have large 2017 2011

uncertainties in boundary-layer regimes with sharp inversions where the LES subgrid turbulence param-

eterization is significantly active. Uncertainty around this reference should be documented so that history 

matching can explicitly take it into account.

3. High-Tune Explorer (htexplo), a Statistical Tool to Calibrate Model 
Parameters and More

3.1. Overview

The present section describes the tool proposed to perform process-based calibration. Its objective is two-

fold: (i) characterize the domain of the model parameter values that allows the model to appropriately 

capture process-level metrics and which can be used for subsequent calibration of the global model, and 

(ii) identify the model parameters that limit model performance and thus highlight the need for model 

parameterization revision. The tool relies on history matching approach developed by Vernon etal.(2010) 

and first used for climate studies by Williamson etal.( ). This method aims at removing “unphysical” 2013

regions of parameter space iteratively, refocusing the search for “acceptably tuned” models at each step. The 

tool finds the subspace of the model parameter space containing simulations consistent with the reference 

metrics, acknowledging the various sources of uncertainty. This tool has already been successfully applied 

to identify the acceptable range of model parameter values in the 3D configuration of the Hadley Center 

climate model (Williamson etal.,2013 2015, ) or in the NEMO oceanic model (Williamson etal.,2017). It is 

here used for the first time in the context of the SCM/LES comparison for a given set of cases.

As already stated in the previous section, we focus here on the parameterizations involved in the representa-

tion of boundary-layer clouds (turbulence, convection, cloud micro and macrophysics, radiation). However, 

this methodology can be easily expanded to other parameterizations and other objects of the Earth system 

as soon as reliable references are available.

Figure1 sketches the main steps of the High-Tune Explorer (htexplo in the following for an explorer to use 

High-resolution simulation to improve and Tune parameterizations) tool:

1. Metric selection and references: First, the cases and associated target metrics are selected. The relevant 

reference for each metric is then identified and the associated uncertainty is estimated. In the present 

case, the reference is an LES and the associated uncertainty is based on an LES ensemble. Observations 

could also be used with an associated error when an LES is not available. This phase is not model-specific 

and could be shared between different models.

2. Selection of model parameters: The model parameters to be calibrated are identified and their possible 

range of values are determined.

3. Experimental design and SCM runs: The experimental design consists of defining the ensemble of exper-

iments (or SCM) to be run. The goal is to optimally sample the parameter space and provide a small set 

of parameter values for which the single-column model will be run. Metrics are computed from each of

the SCM simulations and form the training data-set on which emulators are built.

4. Building emulators, that is, construction of surrogate models, also called “emulators,” one for each met-

ric. Each emulator is based on a Gaussian Process (GP) and predicts the corresponding metric value 

at any point of the full parameter space, without running the SCM. The GP statistical model also pro-

vides a probability distribution of its prediction, thus quantifying the prediction uncertainty for use in 

calibration.

5. History matching: The comparison between the reference metrics and those inferred with the emulators is 

based on a distance that accounts for reference uncertainty, modeler tolerance to error or model discrep-

ancy (induced by e.g., misrepresentation of specific processes, inaccuracy of numerical solvers, model 

resolution) and emulator uncertainty. History matching rejects parameter values that lead to unaccept-
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able model behavior (too large distance from the reference) and thus defines a not-ruled out yet (NROY) 

space, the model parameter space that cannot be further reduced given the sources of uncertainty.

6. Iterative refocusing: To reduce the emulator uncertainty, but only where needed, new iterations (or 

waves) following Steps 3–5 are performed, sampling the NROY space obtained at the end of the previous 

wave for the design and only constructing emulators over the NROY domain.

This tool is available freely under: https://svn.lmd.jussieu.fr/HighTune. Details on the different steps are 

given below. For simplicity, we first describe them for the first iteration and only one metric. Subsequent 

iterations and the addition of other metrics are discussed in Section3.7. This section ends with a discussion 

about the relationship between the present tool and more common tools used for calibration and sensitivity 

analysis.

3.2. Step 1: Metric Selection and References

The metrics used to evaluate the SCM behavior depend on the physical situation considered and the param-

eterization hypothesis. Scalar metrics based on a dynamical or thermodynamical variable (e.g., potential 

temperature, water vapor mixing ratio, wind speed, cloud fraction) sampled at a given time can be used, 

such as the value at a given vertical level, the average, or the maximum over a given layer (e.g., boundary 

layer, cloud layer), or the maximum over the whole atmospheric column. Radiation-oriented metrics are 

particularly relevant to enhance the link between the present process-oriented model calibration and the 

calibration of the corresponding 3D configuration. Ideally, the chosen metric should be as insensitive as 

possible to the model vertical resolution. In that regard, integrals (or averages) are good candidates for scalar 

metrics, as will be illustrated in Part II. Root-mean square errors are not encouraged for two reasons, i/there 

are usually associated to a smaller signal to noise ratio and ii/the implausibility (see Section3.6) is already a 

kind of root-mean square error. The number of metrics to be used is generally of the order of 10, but it can 

be many more.

COUVREUX ET AL.

10.1029/2020MS002217

8 of 27

Figure 1.  Schematic of the different steps of the htexplo tool.
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More complex metrics such as vertical profiles, time series or spatial fields, can also be considered. In that 

case, methods are used to reduce the dimensions of the outputs and principal component decomposition is 

one option (e.g., Salter etal., ). However, scalar metrics, taken at a given time, or averaged over a short 2019

period of time, seem often sufficient to robustly constrain most of the SCM simulations. Therefore, in the 

present paper and in Part II, only scalar metrics will be used.

uncertainty are estimated from an LES ensemble. There are a priori two 

emble, which can be combined. The first consists in building the ensemble 

different large-eddy models, as has been done in several GCSS intercompar-

i ; de Roode etal.,2 2016; Siebesma etal.,2003; Stevens etal.,2005; vanZanten 

e s corresponds to the LES ensemble mean, while the uncertainty is quantified 

b e. The second option, used in this paper, relies on only one large-eddy model 

an y around the reference model configuration by performing sensitivity exper-

im tical resolution, domain size, and parameterization options (e.g., turbulence, 

mic , radiation). In this study, we have chosen to use the simulation realized with 

the he largest domain and with the most relevant parameterization options as the 

refe e mean could also be used. The large-eddy model is the LES-configuration of

Mes  It makes use of a fourth-order centered discretization associated with an explicit 

four time integration. Figure  illustrates the spread obtained from a Meso-NH LES 2

ense nsitivity to horizontal, vertical resolution, domain size and options in the tur-

bulen es for one given case, namely the Atmospheric Radiation Measurement  (ARM) 

Cumu a golden case for the study of continental cumulus (Brown etal.,2002). TableA2

in the es the different simulations used to estimate the uncertainty. Consistently with the 

literatu 2002; Matheou etal.,2011; vanZanten etal., ; Y. Zhang etal.,2011 2017), domain-av-

erage co odynamical quantities are weakly sensitive to changes in resolution, domain size 

and para  choices while the domain-average liquid water content and cloud fraction exhibit 

more spre s derived from those latter quantities will therefore be associated to a larger uncer-

tainty. Figu  indicates in gray shading the spread obtained from the LES intercomparison of Brown 

etal.(2002) hting a similar uncertainty estimate between the two methods mentioned above. Similar 

results are o d for LES ensembles of other intercomparison exercises (not shown). For a given metric 

f r, f is the ref ce metric value, estimated from the reference LES simulation or the average of the LES 

ensemble and r f  is the associated square error estimated from the LES ensemble. Note that, in the absence 

of available LES, observations can also be used as a reference to be compared to the SCM runs as illustrated 

in Ahmat Younous etal.( ) but the observation error needs to be quantified.2018

3.3. Step 2: Selection of Model Parameters

The number of model parameters can be large (generally on the order of 10 for each parameterization). Esti-

mating the prior range of values that needs to be explored for each of them requires the modeler's expertize. 

The definition of this range is an important step as the results are only valid in this predefined parameter 

space (Williamson etal.,2013). So, we advise to choose a range as wide as possible in the absence of physical 

reasons or numerical concerns for constraining it. Nevertheless, the user might consider some tradeoff as 

the smaller the ranges, the smaller the space to explore.

As the tool samples any parameter independently from the others (see Step 3), the method remains efficient 

even though a parameter with no influence on the results was included. A sensitivity analysis (Oakley & 

O'Hagan,2004) could be used as a preliminary step in order to reduce the number of selected parameters 

but may not be a good idea in general (see Section ). The user can consider either linear or logarithmic 3.8

variations of the parameter values.

In the following, we consider a set of parameters  = (λ λk), where the  parameters are a subset of the model k

parameters involved in the different parameterizations (see Section ).1
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3.4. Step 3: Experimental Design and SCM Runs

Once the model parameters are selected and their range of values defined, an experimen al design is built. 

It corresponds to the selection of a relatively small set of values for the model parameters i , usually 

on the order of 10 times the number of parameters, as discussed in Loeppky etal.( ). It explores the 2009

initial (or input) space of the parameter values in the range given for each parameter. An SCM simulation 

is performed for each of them and provides the state vector xc (λi ). The objective is to ”fill” the parameter 

space as uniformly as possible maximizing the minimum distance between points. Here, as classically used 

for the design of computer experiments, a Latin Hypercube (LHC) (Williamson etal., ) is used to effi2015 -

ciently sample the input parameter space. Classically, a LHC for a n-member ensemble uniformly divides 

each dimension of the input space into  bins that are sampled once each and only once. All the parameters n

are thus varied simultaneously in contrast to other sensitivity analysis approaches such as in the Morris 

sensitivity analysis (Saltelli, ), where parameters are varied one by one. The LHC sampling used here 2002

maximizes the minimum distance between the selected points of the input space.

More precisely, here we use -extended latin hypercubes as proposed by Williamson( ). It consists in k 2015

producing several LHCs, added sequentially, which ensure that each additional LHC samples an area of the 

space that has not been sampled yet by the previous LHCs. Such a design provides the advantage of being 

able to robustly check the GP performance on well-designed sub-LHCs.
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Figure 2.  Vertical profile of (a) potential temperature, (b) water vapor mixing ratio, (c) liquid water content and (d) cloud fraction averaged over the horizontal 
domain at the tenth hour of the simulation (1530 LT) and time series of (f) the cloud top and (e) the maximum cloud fraction over the atmospheric column. 
The gray shading corresponds to the results of the Brown etal.( ) intercomparison. The different color lines correspond to different sensitivity tests realized 2002
with Meso-NH changing either, one by one, the size of the domain, the vertical or horizontal resolution and some option in the cloud scheme, microphysics 
scheme or turbulence scheme (detailed in Table ).A2
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3.5. Step 4: Building Emulators

The selected metric (see Step 1) is computed for each SCM simulation, noted  (f λi) for i … n=1, , . These 

numbers serve as a training data set for the building of an emulator. The emulator is then used to predict 

the metric values f(λ) for any vector of parameter values  in the input space. A separate emulator is conλ -

structed for each metric.

Specifically, we use a Gaussian process (GP), a well-known statistical model which has the advantage of

interpolating observed model runs and provides a probabilistic prediction. The emulator gives a probability 

distribution for  written asf

   
2 2

( ) , , GP ( , ), ( , , , ) ,f m k     

where , m (λ β) is a prior mean function with parameters  and  a specified kernel (a covariance k

function describing the covariance between any two points). The kernel has a parameter that normally 

controls variance, σ2, and parameters δk for each dimension of the input parameter λk that control the 

correlation attributed to each input. To start with, we assume a stationary kernel, that is, the covariance 

only depends on the distance between points and not the absolute position. The GP is such that any finite 

collection f (λ1), …,  (f λn) has a multivariate normal distribution with mean vector  (m λ1, β), …, m (λn, β), and 

variance matrix  with ΣΣ ij =  (k λi, λj, σ
2, ). Let the training data be δ i n, then

2 2f m k         

where there are well-known closed form expressions for * and * (Williamson etal., ). Note that m k 2017 m* 

and k* are the updated mean and covariance representing what the emulator has “learned” from the data, F.

Whilst there are many possible prior choices of  and , htexplo uses a 2-phase approach. First, we impose m k

a structured mean surface  (m λ β β, )= Tg λ( ) as a linear combination of simple functions of the input pa-

rameters contained in the vector ) (e.g., monomials, Fourier functions, and interaction terms are chosen g λ(

through the forwards selection and backwards elimination method described in Williamson etal.,2013]). 

In the second stage, we use the squared exponential kernel function and Hamiltonian Monte Carlo [HMC, 

implemented in Stan – Carpenter & Coauthors, ) to sample from the posterior distribution of the pa2017 -

rameters , β σ2, and  given  (note that the mean surface  ( ) is not directly fitted in phase 1, but its δ F m λ β, 

structure is chosen, with Bayesian inference ultimately used in fitting for Phase 2).

The choice of HMC implemented in Stan was motivated by requiring robust automation of emulator build-

ing across many metrics and cases. Stan affords us with the ability to specify flexible and intuitive priors, 

and we use weakly informative priors as advocated by Gelman( ). With the exception of the intercept 2006

term (which is uniform), our prior for each  is N (0, 10) and we use the ordinary least squares (OLS) fitted β

values as starting values for the HMC. We set δk Gamma (4, 4) for all k to allow a wide range of potential 

correlation structures (this is a weakly informative prior) whilst penalizing very small values that typically 

have high likelihoods, but lead to emulators with no predictive power (for discussion, see Volodina,2020). 

Our prior for σ2  is a truncated Normal (at 0), with mean at the residual from our OLS fits, and variance set 

using the variability of the ensemble (full details for these choices in Volodina, ).2020

The emulator ing standardized Leave One Out (LOO) diagnostics (e.g.

on the trainin ests remove one point at a time from the training set a

fitted on the re to predict the removed point. Repeated over the training

whether the ma out points lie within 95% prediction intervals (we would 

Another check c moving a subdesign of the training set and attempting to 

the new reduced t . If the emulator fails these checks, we revisit the computation o

For example, the p described in Volodina and Williamson( ) (and available in h2020

used to derive an ap te non-stationary kernel  before refitting the emulator by HMC. k

the GP expectation  provides an estimation of the metric for any given , and its varianceλ

provides an uncertainty around this estimation.
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SCM runs are computationally cheap, but the fitted emulators are even cheaper and thus allow the compu-

tation of millions of predictions, with associated uncertainties, in a short time (a few minutes). This enables 

us to numerically define the space containing acceptable sets of parameters with respect to the chosen met-

rics and in particular, to visualize it (Step 5). The choice of Stan has proven effective for this project, though 

it does not scale well to larger ensembles. Going forward, a new version of the tools defaulting to Maximum 

A Posterior (MAP) estimation and using efficient parallel implementation has just been released enabling 

millions of predictions in just a few seconds (Williamson & Volodina, ).2020

3.6. Step 5: History Matching

The htexplo tool relie n the history matching technique, which seeks to rule out parameter values from 

the input space that a “implausible,” given the SCM behavior for these parameter values and the sources 

of uncertainty. These urces include the reference (observation) error, treated as a random quantity with 

mean 0 and variance r f , and the SCM discrepancy, which has mean 0 (unless the user knows the direction 

in which the model is biased) and variance d f (Sexton etal., ). The emulator is used to estimate the 2011

model behavior on a much larger sample of the input space than possible with the SCM. To history match 

the SCM behavior, we introduce the “implausibility” measure for the metric  (Williamson etal.,f 2013), If( ), λ

which is a distance between the metric prediction ) by the emulator at , and the reference metric value, f(λ λ

rf , with respect to the norm induced by our second-order uncertainty specification, noted  H  below. The 

implausibility reads

I r f
r f

Var r f

r f

f f
H

f

f

f

( ) ( )
| ( ) |

( )

| ( )

 






  
  

  








E

E

E  

   

|

( )

.

, ,  r f d f Var f2 2

 (5)

The model discrepancy for the metric f σ, d f, , accounts for the model structural error due to the inherent 

inability of the SCM to reproduce the LES exactly (e.g., due to unresolved physics or missing processes). It 

could be defined as the minimum error possible when exploring the full set of parameters, however, this 

could permit the SCM to be close to the reference for the wrong reasons and does not account for multiple 

metrics and cases, so we avoid this definition. Instead it is typically defined to be the uncertainty left in the 

difference between the SCM metric when the parameters are fixed at their best values (fixed the same for 

all metrics) and the references. This quantity is perhaps the target of model development in the first place 

and, as such, is unknown. For example, suppose we want to test the ability of a new parameterization to 

capture the behavior of the reference. With the standard definition of discrepancy, the uncertainty need-

ed so that the new parameterization captures the behavior of the reference, it is not clear how to proceed 

with testing. Our approach instead is to treat model discrepancy as a “tolerance to error” as detailed in 

Williamson etal. ( ). The tolerance to error is the distance between model results and the reference 2017

that the modeler would be satisfied with, enabling modelers to place confidence in certain metrics/parts 

of their parameterization, and relax restrictions on others as needed. As illustrated in Section  and Part 4

II, defining this tolerance to error can be a difficult a priori task; however experimenting with this value 

provides important insights into the behavior of the model and its inherent limitations. The most attractive 

feature of this approach to discrepancy is that, for a given tolerance to error, if the induced NROY space is 

empty it means that the parameterization is not able to reproduce the reference under the given tolerance. 

Either the tolerance can be relaxed, accepting the limitations of the current set of parameterizations, or the 

parameterization can be revisited.

The implausibility defines a membership rule for NROY space after the first iteration:

 
1

NROY { | ( ) }.f fI T 
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where T is a chosen threshold (or cutoff). For scalar metrics, it is standard to use =3 justified using T

Pukelsheim's rule that states 95% of the probability density for any unimodal distribution is within 3 stand-

ard deviations of the mean (Pukelsheim,1994). Using this threshold makes it unlikely that good parameter 

values are ruled out by chance. To measure and visualize NROY space, the implausibility If(λ) is calculated 

on a random LHC sampling of a large number (on the order of hundreds of thousands or millions) of vec-

tors .λ

Note that If(λ) can be smaller than the chosen threshold T either because  is close to the reference 

or because the sum of the different errors is large. When the uncertainty of the emulator is larger than the 

tolerance to error and observation error, points that should be ruled out are kept in the NROY. In this case, 

further iterations are desirable in order to increase the density of the sampling of NROY and hence improve 

the emulator quality and reduce the associated uncertainty.

3.7. Iterative Refocusing and Multi-Metrics

One advanta thod is to progressively optimize the design of simulations to be run. New simu-

lations are ite el ed only where it is useful to increase the emulator accuracy. This is performed by 

iterating the s e p ss previously described several times in ”waves,” (this is termed ”iterative refocus-

ing” and is a f dam al part of the history matching approach). Each new iteration  starts from the ren -

maining space ROYf  estimated at the end of the previous wave. Because of its complex geometry, a LHC 

sampling, as in the first wave, cannot be applied, and therefore the re nin ace is re-sampled uniform-

ly. A new SCM simulation ensemble is performed with this design an s us o proceed with Steps 4 and 

5. The new emulator is only valid in the new parameter space, namel ROYf . Outside this space, we rely 

on the emulators from the previous waves. As in Step 5, to measure and visualize f , the implausibility 

is computed over a large nu ts in the input space. The threshold  may be varied between waves, T

but we advise to keep it to 3 he process has not converged (i.e. the emulator variance within the 

current NROY space remain e also Section  and Part II). The iterative refocusing stops when the 4

convergence of the sequence f  has been qualitatively achieved.

e have considered only one metric, but several metrics  can be combined at the same time. 

ausibility is then computed for each metric and the total NROYn space is the intersection of the 

fk  associated with each metric:

      NROY NROY | # | ( ) ,>
n n n

f fk kk
k I T

# represents the number of metrics fulfilling the condition indicated into brackets (where the implausibility 

is greater than the threshold) and , the number of metrics for which the model is allowed to be far from τ

the reference while still kept in the NROY space. If =0, all metrics must satisfy our implausibility cutoff. τ

If there are a large number of metrics, then  should be increased ( 1) to avoid multiple testing problems τ τ 
meaning that too many good parameter values are ruled out by chance. If a modeler seeks to prioritize cer-

tain metrics, they can either be introduced in early waves, ensuring that the NROY space satisfies priority 

metrics first before introducing new ones, or the tolerance to error, which is defined for each metric, can be 

used to impose priorities (a larger tolerance to error induces a less constraining metric).

3.8. Sensitivity Analysis Provided by the Tool

The htexplo tool provides its own sensitivity analysis, which, due to the use of multi-wave history matching, 

is rather different from traditional methods applied to models throughout the literature (Bastidas etal.,2006; 

Guo etal., ; Johnson etal., ). Traditional methods, either derivative-based (Saltelli, ), or vari2014 2015 2002 -

ation-based (Oakley & O'Hagan, ), essentially seek to identify which parameters modify model output. 2004

This can help focus further study, model development or even observation collection to help understand 
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these parameters. Note that the htexplo tool provides at the first iteration a sensitivity analysis over the en-

tire space where correlation among parameters is included as the parameters are not varied one at a time.

However, for calibration purposes, once history matching is considered as a valid approach for a given 

model, the sensitivity analysis should not be done on the full model input space. By using history matching, 

we acknowledge that there is a large part of the model parameter space that is not useful for understanding 

reality. The Gaussian processes remove this uninformative space in order to target the space where the 

model becomes useful. Once we have this useful subspace, the usual and important questions that are posed 

by sensitivity analysis should be considered. For example, how is the model output changing as we move 

through parameter space and which parameters are responsible for these changes? As will be illustrated in 

Section4, the NROY visualization allows us to see, as we move in two dimensions of a parameter space, in 

addition to the possible values of each parameters, which combinations of parameters it is important to get 

right. As all models within the NROY space are consistent with our metrics, sensitivity analysis as described 

here is now really focused on the relevant subspace. Note that sensitivity analysis on the original input 

space does not answer these questions. Seen through the history matching lens, on the full space, sensitivity 

analysis is showing us which parameters are responsible for the variability in the space we are about to cut. 

Whilst informative for helping us cut the space efficiently, sensitivity analysis is not necessary at this stage. 

Our methods are already efficiently able to do this. As well as all of the benefits we have for tuning, we 

would argue that history matching is achieving many of the same things that a sensitivity analysis achieves 

in terms of informing the modeling, but concentrated only on the model input space that is consistent with 

the observations.

Performing variance-based sensitivity analysis in NROY space is not trivial and we are not aware of any 

methods that are currently able to do this. Variance-based sensitivity analysis requires independent input 

spaces (which is what we always start with in Wave 1). But after cutting space, we have complex relation-

ships between the parameters. NROY space may not even be simply connected, and can be highly non-lin-

ear. Efficient methods for calculating sensitivity in these unusual spaces would be interesting to apply for 

history matching as an avenue for further research.

3.9. On the Use of History Matching and the Avoidance of Optimization

Whilst history matching is well established and is being used in a growing number of climate studies, other 

methods of calibration are more popular and we believe should be avoided for process-based model devel-

opment. Whilst many methods based on optimizing a cost function exist (Hourdin etal., ), the most 2017

popular in the UQ community is Bayesian calibration (Kennedy & O'Hagan, ). Bayesian calibration re2001 -

quires a similar set up to history matching (emulators, observation errors, and model discrepancy) and then 

jointly finds the posterior probability distribution of the “best” value of the input parameters and the model 

discrepancy (strong prior information on the discrepancy is required to make this sensible, Brynjarsdóttir 

& O'Hagan, ). Optimization methods like these do not afford us with the chance to falsify a parame2014 -

terization (they always find the best value), nor do they give all parameter values that are consistent with 

the observations (in our case reference LES) that can then be used when tuning the 3D model (see Part II).

4. Illustration of htexplo on a Simple Case

In this section, the use of htexplo is illustrated for the ARPEGE-Climat 6.3 atmospheric model (Roehrig 

etal.,2020; Voldoire etal.,2019) based on a single 1D case. More comprehensive exploitation of the tool 

will be given in Part II.

4.1. Model, Parameters, and Case-Study

We use the SCM version of ARPEGE-Climat 6.3, the atmospheric component of the CNRM-CM6-1 climate 

model (Roehrig etal.,2020; Voldoire etal.,2019) and aim at analyzing the importance of the values of free 

parameters of the turbulence scheme (based on Cuxart etal., ) on the simulation of an idealized clear 2000
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boundary layer. Details on the ARPEGE-Climat atmospheric component, the turbulence scheme, and the 

used configuration are given in AppendixB. Among the different free parameters of the turbulence scheme, 

three are selected for this analysis. A controls the expression of the dissipation length-scale as a function of

the mixing length-scale; AU and AT respectively enter into the expression of the exchange coefficient for the 

wind and the temperature (the same coefficient, AU, is used for both the zonal and meridional component 

of the wind). The range of variation explored for each parameter is indicated in Table  and the parameters 1

are varied linearly in those ranges. The turbulence parameterization includes other free parameters but the 

three most influential parameters for this case have been selected and no free parameters of the mass-flux 

scheme are considered.

To keep the example simple, only one case is used here. This case is a dry idealized case of a convective 

boundary layer with a constant-in-time large surface sensible heat flux of 270W m2 ( =0.24K m sQ 1 in, 

Ayotte etal., ) with a strongly capped boundary layer, called 24SC in the following. The importance of1996

combining different cases will be illustrated in Part II.

We first document a sequence of three waves where additional metrics are added at each iteration (Exper-

iment 1). We will then discuss the results obtained when adding all the metrics directly at Wave 1 (Experi-

ment 2), varying the threshold used to determine the NROY (Experiment 3 see also Section3.5), using more 

SCM runs (Experiment 4), and varying the tolerance to error (Experiments 5 and 6).

4.2.  Three Consecutive Waves Adding Metrics Progressively

For the first iteration (or wave in the following) of Experiment 1, 30 SCM simulations of the 24SC case were 

realized by varying values for the three parameters exploring at best (using a LHC sampling, see Section3.4) 

the range of each parameters (Table ). Figure  illustrates that the parameters are randomly sampled as 1 3

indicated by the distribution of the black dots along the different -axes. Three different metrics are used x

to characterize the turbulent mixing in the boundary layer and are progressively introduced through the 

successive waves. The first chosen metric is the potential temperature averaged over the layer 400–600m. 

It is a good proxy for the boundary-layer potential temperature, which is well mixed between the surface 

and the boundary-layer top, located around 1,300m. This metric is computed for the 30 SCM runs; these 

computations serve as training data for the construction of the emulator. The prior mean function (see Sec-

tion ), 3.5 m, for this emulator is a sum of linear and quadratic functions of the parameters. The stationary 

squared-exponential kernel provides a sufficient fit to the data according to the leave-one-out methodology. 

Figure3 presents the variation of the metric as a function of the parameters: some first-order relationships 

appear with the boundary-layer potential temperature increasing with AU and AT to a lesser extent (due to 

an increased mixing associated to a larger diffusivity and larger fluxes) and decreasing with A (due to a 

reduced mixing because of the increased dissipation). For this metric, we have chosen a tolerance to error 

of 0.5K. This may be a bit large for this very idealized case (with no moisture, an already convective initial 

state) but this is an error we will be satisfied with generally for boundary-layer potential temperature. Given 

this tolerance to error (indicated by the dashed horizontal gray line), the metric does not provide much 

constraint on the model behavior and the entire initial parameter space is kept (cf. Table ). Note that this 2

tolerance to error is much larger than the uncertainty around the LES (σr f, =0.075K) and the emulator 

(this uncertainty varies across the values of the parameters; it is quantified here as the mean of the standard 

deviation for all the points of the data set during the LOO experiment. For wave 1 and the first metric, it is 

0.042K). Section  details the effect of a reduced tolerance to error.4.3

A second wave is realized, with 30 runs sampling the NROY space of the first wave (the previous 30 SCM 

runs could also have been used for efficiency), which is in fact the entire initial parameter space as the first 

metric did not constrain the parameter space. Two metrics are computed from those 30 runs: the potential 

temperature averaged between 400m and 600m as in the first wave and the entrainment metric, A, quan-

tifying the overshoot of the boundary layer relative to the initial profile as defined in Ayotte etal.( ). A 1996

is computed as:
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z t z t dz max z t z t dz
A

t t t t

t0 being the initial time, t f the time at which the metric is computed, and  the top of the model or a level H

largely above the boundary-layer top. This metric is less commonly used for evaluating models and it was 

more difficult to specify a tolerance to error, which was taken as 0.05K m s1. An emulator is built for each 

metric. The second metric is more restrictive and the NROY space is now reduced to 30% of the initial 

parameter space (Table ). The obtained NROY (not shown) is not very different from the one obtained 2

for the third wave. It excludes values of the parameters that lead to simulations with too large or too small 
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Names Default Minimum Maximum Parameter description

AU 0.126 0.01 0.4 Affects the eddy-diffusivity of momentum

A 0.85 0.1 3. Controls the dissipation length-scale

AT 0.14 0.01 1. Affects the eddy-diffusivity of temperature

Table 1 
List of the Free Parameters of the Turbulence Scheme That are Varied in This Example With Default Values and Range 

of Variation

Figure 3.  The three metrics, boundary-layer potential temperature (a)–(c), entrainment metric (d)–(f), and boundary-layer windspeed (g)–(i) are plotted as 
a function of the value of each parameter, AU (a), (d), (g), A (b), (e), (h), and AT (c), (f), (i). A different color is used for the different waves of Experiment 1 
(black for Wave 1, red for Wave 2, green for Wave 3, and blue for Wave 4). The vertical dashed blue line corresponds to the default value of the parameter used 
in the model, the horizontal thin full gray line correspond to the reference metric and the dotted lines indicates the uncertainty around this reference from the 
different LES simulations while the dashed lines indicate the tolerance to error around the reference.

P
rin

te
d

 b
y [A

G
U

 Jo
u

rn
a
ls - 0

8
2

.0
6

6
.2

4
0

.1
5

2
 - /d

o
i/e

p
d

f/1
0

.1
0

2
9

/2
0

2
0

M
S

0
0

2
2

1
7

] a
t [2

6
/0

2
/2

0
2

1
].



Journal of Advances in Modeling Earth Systems

entrainment metric as indicated by the differences between the red dots 

and the green ones in Figure .3

A third wave is realized, with 30 new SCM runs sampling the new NROY. 

Three metrics are computed from those 30 runs: the two previous ones 

plus the wind speed averaged between 400m and 600m. For this last 

metric, we fixed the tolerance to error to 1m s1 . After this third iteration, 

the NROY is 23% of the initial space. As shown in Figure , the spread of4

the different simulations that sampled the parameter values reduces pro-

gressively throughout the different waves and this tool allows to discard 

values of parameters that induce a too deep boundary layer. The wind-

speed profiles did not completely converge and this is associated to the 

tolerance to error, which has been fixed to 1ms1.

The uncertainty around the LES obtained from eight different LES runs 

with slightly different configurations, detailed in Appendix A, is 0.075K 

for θ BL, 0.014K m s1 for Aθ, and 0.083m s1 for wsBL , on the same order 

of magnitude of the emulator uncertainty. For the first and third metrics, 

the tolerance to error is much larger than the reference and emulator 

uncertainties while for the second metric the three uncertainties are of

the same order of magnitude.

The final NROY space after the third wave is visualized in Figure5. This 

figure shows, on the upper right side, the two-dimensional (2D) density 

plots of the acceptable parameter space for each pair of parameters. For 

a given point in each sub-figure the shading indicates the percentage of

the domain in the other dimensions ( -2, here only one as only three n

parameters are considered) that is acceptable. The metrics tend to reject 

preferentially low values of A  with high values of AU or high values of

A  with low values of AU underlying some correlation between these two 

parameters. As a practical tool, those density plots provide their own type 

of second-order sensitivity analysis. They allow us to see, as we move in 

two dimensions of the parameter space, how the shape is changing and, 

moreover, which combinations of parameters it is important to get right 

and, not usually included in a sensitivity analysis, how they need to be set in order to get sensible answers. 

The default values of the parameters are within the NROY space confirming that they correspond to an ac-

ceptable calibration of the turbulence scheme, given the chosen tolerance to error and the LES uncertainty. 

This is also confirmed by the simulations of the last wave having a behavior similar to the default simulation 

as shown in Figure .4

4.3. Robustness

In this subsection, we analyze the sensitivity of the results to (i) the sequence of introduction of metrics 

(Experiment 2 uses the three metrics directly at Wave 1), (ii) the threshold used to determine the NROY 

space (Experiment 3), (iii) the number of SCM runs used to form the training data set (Experiment 4), and 

(iv) the tolerance to error (Experiments 5 and 6).

If the three metrics are introduced directly in the first wave (Experiment 2), the NROY space is similar in 

shape to the one obtained after three waves (see Table  and Figure ) although the NROY space is larger 2 5

(40% against 23%). Repeating more waves with the same metrics allows to progressively converge to the 

same NROY space. Note that a test with only one metric but the most constraining one, namely the en-

trainment metric, leads to very similar result ( ) for the first wave (not shown). Although not NROY =43%

illustrated for this case, introducing the metrics one by one, is sometimes important: i/it can allow us to give 

some priority among the metrics, first finding a space consistent with the first metric in which the second 

metric is then used as a constraint and ii/if one metric has a strong non-linear behavior reducing the initial 
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No  Expt ,d BL ,d Ay ,d wsBL Cutoff NROY

No  Wave (K) IK ms1) (m s1) (%)

Exp1-1 0.5 – – 3 100

Exp1-2 0.5 0.05 – 3 30

Exp1-3 0.5 0.05 1 3 23

Exp1-4 0.5 0.05 1 3 20

Exp1-5 0.5 0.05 1 3 18

Exp2-1 0.5 0.05 1 3 40

Exp2-2 0.5 0.05 1 3 38

Exp2-3 0.5 0.05 1 3 27

Exp2-4 0.5 0.05 1 3 17

Exp3-1 0.5 0.05 1 3 72

Exp3-2 0.5 0.05 1 3 32

Exp3-3 0.5 0.05 1 2.5 22

Exp3-4 0.5 0.05 1 2. 15

Exp4-1 0.5 0.05 1 3 25

Exp4-2 0.5 0.05 1 3 19

Exp5-1 0.25 0.025 0.5 3 32

Exp6-1 0.1 0.01 0.25 3 31

Table 2 
Description of the Model Discrepancy (Disc.) of the Given Metric 

(Indicated in the 2nd, 3rd, and 4th Columns), the Cutoff, Threshold 

Used for Implausibility (5th Column) and the Not-Ruled-Out-Yet Space 
(Fraction in % of Initial Space of Parameters, 6th Column)for Each Metric 

(7th Column) for Each Experiment and Wave
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parameter spaces with other metrics may increase the capacity of the emulator to reproduce the metric 

behavior. These results also indicate that adding a new metric in the core of the process does not alter the 

selection, allowing us to add supplementary metrics if one realizes that some behavior of the SCM is not 

constrained enough, a fundamental aspect of history matching. Defining when to stop the iteration is not 

easy. We recommend to stop iterations when the NROY stops to significantly decrease. At this stage, one 

can reduce the cutoff used to define the implausibility and re-iterate with this new cutoff. This is illustrated 

with more detail in part II. Here, Table  shows that a NROY of 18% is obtained after Wave 5 for Experiment 2

1, Wave 4 for Experiment 2, or Wave 2 for Experiment 4. We can assume that for this cutoff the convergence 

is reached at those waves.

In Experiment 3, we first realize two waves as in Experiment 2 and then progressively reduce the threshold 

used to determine the NROY space from 3 to 2.5 in Wave 3 and from 2.5 to 2 in Wave 4 (see Table ) to ex2 -

plore the impact of less conservative threshold (a threshold of three corresponds to ruling out what exceeds 

three times the uncertainties and keeps 95% of the probability for any unimodal probability distribution). 

The differences in the NROY space of the first wave with Exp2-1 indicates that 30 SCM runs are probably 

not enough to robustly constrain the first iteration and more iterations are needed. Then, reducing the 

cutoff induces a smaller NROY space but the change is not radical. This was expected from the lower left 

figures of Figure5 that show the minimum value of the implausibility for any variations of the other param-

eters (here, the third parameter). Indeed, the area with minimum value of If (λ)>3 (i.e., the points that are 

excluded from the NROY space whatever the value of the third parameter) is very similar to the area with 

minimum value of If( )>2.λ

All of the previous experiments have been realized using a rather small training data set of 30 SCM runs (10 

times the number of parameters). Experiment 4 has tested the impact of using 90 SCM runs instead of 30 for 

wave 1. This experiment produces directly a smaller NROY space (NROY=25%; Figure ) at the first wave 6
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Figure 4.  Vertical profile of (a) potential temperature and (b) wind speed for the last hour of the simulation with the 
spread of the ensemble of simulations used for the different waves indicated in different color shadings for Experiment 
1, the default simulation is in black, the reference LES in thick dark blue, and the different elements of the LES 
ensemble in thin blue lines. LES, large-eddy simulations.
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Figure 5.  The left panel corresponds to the result of Exp1-3 and the right panel to Exp2-1. The upper right triangle contains three subfigures showing 2D sub-
matrix. Each sub-matrix is a restriction to two parameters, the name of which are given in the diagonal of the main figure, and presents in colors the fraction of
points with implausibility smaller than the threshold (here a value of 3). This fraction is obtained by fixing the two parameters at values of the -axis and -axis x y
of the plotted location and searching the other dimensions (here the third dimension as we have only three parameters) of the parameter space. This allows 
to visualize in 2D the full NROY which is 3D here but can be  if  parameters are selected. The lower left triangle (with also three subfigures) presents the n-2 n

minimum value of the implausibility when all the parameters (here only one) are varied except those used as - and -axes. These plots are orientated the same x y
way as those on the upper triangle, for easier visual comparison. The black dots correspond to the default values used in the model. 2D, two-dimensional; 3D, 
three-dimensional.

Figure 6.  Same as Figure  but for the sensitivity to the number of SCM runs (Experiment 4, left panel) and to the tolerance error (Experiment 5, right panel). 5
SCM, single-column model.
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than obtained from 30 SCM runs (see Exp3-1 or Exp2-1 in Table ). A compromise must be found between 2

a larger ensemble of simulations that increases robustness but is costlier.

The sensitivity to the tolerance to error is illustrated in Table  and Figure  with Experiments 5 and 6. 2 6

When reducing the tolerance to error by a factor of two the NROY space is 32% of the initial space in Exp5-1 

(using the three metrics at once, so to be compared to 40%). The NROY space (31% of the initial space) is 

not much reduced further when reducing the tolerance to error twice more (Exp6-1), because the tolerance 

to error is not anymore the limiting uncertainty. It is interesting to note that even when strongly reducing 

the tolerance to error, the default values for the three selected parameters are still in the NROY space vali-

dating the choice of parameter values used in the control simulation. The lower left panel of the subfigures 

in Figures  and  indicates the minimum implausibility along the other dimensions of the space and as 5 6

illustrated in Figure , reducing the tolerance error (when larger than the other errors) induces a reduction 6

of the denominator in the implausibility and therefore an increase of implausibility.

5. Conclusion

In this paper, we make a proposal to accelerate weather and climate model development. Our proposal tack-

les model development and calibration jointly. For that purpose, we have developed a tool that formalizes 

a process-based calibration, the High-Tune Explorer made available to the other modeling groups. It exten-

sively exploits the SCM/LES comparison on a multicases, multi-metrics basis, and benefits from machine 

learning techniques. In contrast with other recent proposals to use machine learning techniques in climate 

modeling, we keep parameterizations as key ingredients of these models because they summarize our cur-

rent understanding of the main physical processes. This choice is motivated in particular by the confidence 

needed when extrapolating the model results to a future climate.

The tool allows us to define the sub-domain of the parameter values for which SCM matches LES on se-

lected metrics for a series of cases within a given uncertainty. The exploration of the free-parameter space 

is facilitated using Gaussian process emulators. These emulators, once trained on a limited number of real 

simulations, predict the SCM with uncertainty for any value of the parameters in a much shorter time than 

required to run the SCM. History matching using the emulator is performed iteratively to progressively 

shrink the space of acceptable parameter values. This iterative approach contrasts with the more traditional 

tuning strategy based on optimization, which seeks an individual “best” value where the SCM minimizes 

a cost function computed for a set of given metrics. The latter approach strongly depends on the weights 

given to each metric and is highly sensitive to the choice of metrics. By pursuing a strategy for discarding 

parameter values, we are left with a free parameter domain that is (i) consistent with the metrics we have 

chosen, (ii) can be further reduced by introducing new metrics or altering our tolerance to model error, and 

(iii) does not claim a single best simulation which may be over-fitted to one or more metrics, needlessly 

biasing the simulation and potentially leading to less physical behavior than other choices in our not-ruled-

out-yet space when the model is projected into different regimes. Our tool formalizes the consideration of

the different sources of uncertainties associated to the reference, the statistical tool and the model. For the 

latter, we take a “tolerance to error” approach, allowing the question of whether a parameterization can 

match our reference as well as we think it ought to, and enabling us to understand the model's limitations 

throughout the process.

In the present study, we present applications of the High-Tune Explorer to the SCM/LES framework, focused 

on the representation of the atmospheric boundary layer. We have illustrated how this tool allows us to 

objectively verify choices that have been made by model developers for the free-parameter values. Exper-

imenting with the combination of the metrics with this tool allows us to clarify the importance of a given 

metric, the number or combination of metrics that should be used, and the possible redundancy between 

metrics all in an efficient way that was not possible before. The tool also enables us to include new metrics 

at a new iteration so that we can pursue the calibration exercise, even though one realizes an important defi-

ciency of the model is not addressed by the previously selected metrics. Our framework allows a progressive 

addition of metrics, cases or a gradual reduction of the tolerance to error and is therefore very flexible.
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Although this new framework is tested here for the improvement of boundary-layer processes (turbulent 

transport in Part I and cloud representation in Part II) by running the full atmospheric physics on one 

model column considering well established test cases for which LES are particularly relevant, it has much 

broader application. It can be used for instance to calibrate elementary pieces of parameterization (e.g., en-

trainment formulation) without time integration. This methodology can be easily expanded to other param-

eterizations as well. The key ingredient for doing this is a reliable reference with documented uncertainty. 

This reference could come either from a detailed modeling of the process, as done here with LES, or from 

observations as long as the other sources of discrepancy, as the uncertainty coming form the case definition, 

are documented. Proposing new relevant metrics and estimation of associated uncertainties will become 

valuable now that we know how to include them in the model improvement process. An effort is currently 

done in that direction in parallel to the work presented here, consisting in providing reference radiative 

transfer computations on the classical cloud test cases currently used for parameterization development. 

The development of the parameterization of boundary layer and clouds based on SCM/LES comparisons 

focused so far on the representation of atmospheric transport and macrophysics of clouds, but the radiative 

transfer computations run in LES models were often not more reliable than those used in GCM, preventing 

the use of radiative metrics. By developing fast and accurate radiative tools that account for the full 3D radi-

ative transfer in LES cloud scene, as proposed by Villefranque etal.( ), we can compute many types of2019

radiative metrics, from monochromatic, local, and directional observable to integrated energetic quantities. 

The use of such radiative metrics will allow us to tackle calibration of radiative parameterizations but also 

to better link the calibration realized at the level of the parameterizations itself with the one realized for 

the final full 3D model calibration, which mainly targets the radiative forcing of the atmospheric general 

circulation.

To conclude, the application of the High-Tune Explorer on SCM/LES comparisons allows us: (i) to quantify 

the parametric uncertainty at process level, (ii) to identify parameters which limit model performance, 

whatever their value, and should be replaced by a more physical parameterization (i.e., when combining 

different cases, it may appear that no value of a parameter is found acceptable for all cases and therefore 

suggests that this parameter cannot be kept constant but instead should depend on environmental condi-

tions), and (iii) to reduce the domain of acceptable values of free parameters used in the final tuning of the 

global model.

We show indeed in Part II how the tool applied first to SCM/LES comparisons, on a multicase basis, can be 

used to reduce the range of acceptable values for the calibration of the complete 3D model and considera-

bly accelerate the resource and time consumption for this step of model development. The final 3D tuning 

becomes a part of the history matching process, by adding new metrics or constraints using the exact same 

codes.

We believe that this tool is a breakthrough for model development as it allows us to place the importance of

the physical understanding of the processes at the heart of model development, based on an extensive use 

of the SCM/LES comparison, whilst harnessing important techniques in machine learning and uncertainty 

quantification. We advocate that the approach presented here leads to a well-defined strategy for calibration 

of the full model that may result in a significant acceleration in model improvement.

Appendix A:  The Different LESs

Different simulations have been run with Meso-NH (Lac etal., ), varying the resolution, domain size, 2018

turbulence formulation, intensity of the white noise introduced at the first level and initial time to trigger 

turbulence, activation of subgrid condensation, and changes in the microphysics scheme for the cloudy 

cases. TableA1 lists the different simulations of the Ayotte case used in Section4 to estimate the uncertainty 

associated to the reference LES and Table  lists the different simulations of the ARM cumulus case used A2

in Section  to estimate the uncertainty associated to the reference LES. The reference LES is highlighted 3

in bold.
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Appendix B: ARPEGE-Climat 6.3 and its turbulence parameterization

ARPEGE-Climat 6.3 is the atmospheric component of the CNRM-CM6-1 climate model (Roehrig 

etal.,2020; Voldoire etal.,2019). It has 91 vertical levels, 15 of them below 1,500m. The model time step is 

15min. Here, we use its SCM version and focus on its representation of a clear convective boundary layer. 

To simulate the processes involved in the boundary layer, the model combines a turbulence scheme with a 

mass-flux scheme, thus following the Eddy-Diffusivity Mass-Flux framework (e.g., Hourdin etal.,2002; Per-

gaud etal., ; Siebesma etal., ; Soares etal., ). The mass-flux scheme represents convection in 2009 2007 2004

a unified way from the clear convective boundary layer regime to the shallow cumulus and deep convection 

regimes (Gueremy, ; Piriou etal., ). In the illustration, we aim at analyzing the importance of the 2011 2007

values of free parameters of the turbulence scheme on the simulation of an idealized clear boundary layer. 

A boundary-layer-top vertical entrainment is activated in the default version of ARPEGE-Climat 6.3 (see 

Roehrig etal.[ ]). For the sake of simplicity of the present illustration, and also because this parame2020 -

terization is weakly active in the analyzed case, it is fully deactivated. Similar results are obtained when it 

is activated.
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Name
Horizontal 
resolution

Vertical 
resolution

Domain 
side

Subgrid 
condensation Microphysics

Turbulence 
mixing length

12Dx25z25 25m 25m 12.8km Warm (ICE3) DeardorffNo

6Dx25z25 ” ” 6.4km ” ” ”

6Dx40z25 40m 25m 6.4km ” ” ”

6Dx40z40 40m 40m 6.4km ” ” ”

6Dx25zvar 25m Stretched grid 6.4km ” ” ”

6Dx100z40 100m 40m 6.4km ” ” ”

25Dx100z40 100m 40m 25.6km ” ” ”

51Dx100z40 100m 40m 51.2km ” ” ”

6DelDx25z25 25m 25m 6.4km ” ” (Dx Dy Dz )1/3

6SbgDx25z25 25m 25m 6.4km ” DeardorffYes

6NprDx25z25 25m 25m 6.4km Only saturation ”No

adjustment

Table A2 
List of the Different LES Runs of the ARM cumulus Case Used to Determine the Uncertainty Around the Reference; the 

Names Indicated in the Left Column are Those Used in The Legend of Figure2

Name Resolution White noise Turbulence Diffusion

Name Dx, Dz Standard deviation (K) length-scale Timescale

Reference 50m, nested<25m 0.01K Deardorff length scale 1,800s

WhiteNoise ” 0.1K ” ”

WhiteNoiseLL ” 0.5K ” ”

Turb ” ” Size of the grid ”

Difshort ” ” ” 300s

Diflong ” ” ” 7,200s

Dx 25m, ” ” ” ”

Dz ”, nested<12.5m ” ” ”

Table A1 
List of the Different LES Runs of the Ayotte Case Used to Determine the Uncertainty Around the Reference

P
rin

te
d

 b
y [A

G
U

 Jo
u

rn
a
ls - 0

8
2

.0
6

6
.2

4
0

.1
5

2
 - /d

o
i/e

p
d

f/1
0

.1
0

2
9

/2
0

2
0

M
S

0
0

2
2

1
7

] a
t [2

6
/0

2
/2

0
2

1
].



Journal of Advances in Modeling Earth Systems

The turbulence scheme is based on Cuxart et al. ( ) which provides the vertical turbul luxes 2000

from which the turbulent source term is derived for the prognostic variables (see more details i ehrig 

etal.[ ]). The scheme relies on a prognostic equation of the grid-scale turbulence kinetic ener2020 :
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where the advectio rms, the pressure fluctuations and the diffusion transport have been neglected.  is ρ

the air density,  the ertical velocity,  and  the zonal and meridional wind components,  is the buoyancy w u v β

parameter (equal to  with  the gravitational constant,  being the potential temperature), g θ θvl  is the liquid 

virtual potential temperature, and L the dissipation length. Primes indicate fluctuations with respect to 

the grid-scale values indicated with overbars. The different turbulent vertical fluxes are diagnosed using 

following, for any variable :φ
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with

K e L Am  ƒ (B3)

with Φφ a stability function also computed at each altitude (for more details see Cuxart etal.[200 Aφ

a free parameter. The mixing length, Lm, is computed following Bougeault and Lacarrere( ); i sists 1989

in computing the vertical displacement an air parcel can travel upwards and downwards with its ilable 

turbulence kinetic energy according to the thermal stratification. Also, L in 6 is defined by   mL L

with A  another free parameter.

Data Availability Statement

All the programs, scripts, and reference LES are publicly available via a Subversion through ”svn check-

out http://svn.lmd.jussieu.fr/HighTune http://doi.”; a fixed version of this code is provided under 

org/10.14768/70efa07b-afe3-43a4-8334-050354f9deac. Note, however, that this tool is a new research tool, 

and, as such, is still evolving. The code, the SCM runs and the LES used to produce Experiment 1 is available 

at .http://doi.org/10.14768/29fbfe70-a8e8-41db-914c-b14be9a6f90b
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