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Gravity waves from fronts and convection
1) Impact of Gravity Waves (GWSs) on the middle atmosphere dynamics

The need to parameterize a broad spectrum of waves: minima of T at the summer mesopause,

and closure of the jets an the midlatitudes mesopause (see textbooks, Andrew et al.~1987)
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Gravity waves from fronts and convection
1) Impact of Gravity Waves (GWs) on the middle atmosphere dynamics

Presence of westerlies (super-rotation)

In the semi-Annual Oscillation

Zonal wind at the Equator
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For the role of equatorial waves and gravity waves on the QBO, see Holton and

Lindzen (1968, 1972).

For the fast Kelvin waves on the easterly phase of the SAO see Dunkerton (1979)




Gravity waves from fronts and convection
2) Globally spectral versus multiwave parameterization schemes

Subgrid scale parametrizations are based on Fourier series decomposition

of the waves field over the model gridbox of sizes 0X, oY, and ot (ot
can be larger than the model time-step).

ei(kax+lby—wct)
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a, b, c are integers, and ka:aé—n,lb:bé—ﬂ,wczcé—;t
(dropped in the following) X ’
Since a lot of waves with different caracteristics are needed this triple Fourier series can

be very expensive to evaluate each timestep

Multiwaves schemes: Globally spectral schemes:
Garcia et al. (2007), _
Alexander and Dunkerton (1999) Treat the spectra globally, and using
Treat the large ensemble of analytical integrals of its different parts
waves but each quite independently .
from the others and using :\_I/l'ne (.1.997()]" McFarl 1997
Lindzen (1981) to evaluate the anzini and McFarlane (1997)
breaking.

Warner and Mclintyre (2001)




Gravity waves from fronts and convection
2) Globally spectral versus multiwave parameterization schemes

Globally spectral schemes,
Use that the observed GWs vertical (m-)spectra have a quasi-universal shape,

with a m-3 slope for the M>M™ part of the spectra that correspond to breaking waves
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Figure 3. The theoretical distortion of a modified-Desaub-
ies vertical wavenumber power spectrum measured by a ra-
diosonde with temperature sensor response time © = 8 s
and with vertical ascent velocity V5 = 5 m s™!. The shaded

region comprises 4% of the total area under the modified-
Desaubies spectrum.

Modified Desaubie (1976)'s vertical
wavenumber spectra ( VanZandt and Fritts 1989)




Gravity waves from fronts and convection
2) Globally spectral versus multiwave parameterization schemes

Globally spectral schemes,

Use that the observed GWs vertical (m-)spectra have a quasi-universal shape,
with a m-3 slope for the M>M™ part of the spectra that correspond to breaking waves
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Figure 3. The theoretical distortion of a modified-Desaub-
ies vertical wavenumber power spectrum measured by a ra-
diosonde with temperature sensor response time © = 8 s
and with vertical ascent velocity V5 = 5 m s™!. The shaded
region comprises 4% of the total area under the modified-
Desaubies spectrum.

Modified Desaubie (1976)'s vertical

The Hines (1987)'s scheme consider

the IM-slope part of the spectra.

It shops the initial spectra more and more
with altitude by diagnosing the initial vertical
Wave-numbers that are likely to be sufficiently
“Doppler spreaded” by the mean-wind
and by the other waves, to reach
a “critical level”, by evaluating a cut-off value:
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wavenumber spectra ( VanZandt and Fritts 1989)




Gravity waves from fronts and convection
2) Globally spectral versus multiwave parameterization schemes

Globally spectral schemes,

Use that the observed GWs vertical (m-)spectra have a quasi-universal shape,
with a m-3 slope for the M>M™ part of the spectra that correspond to breaking waves
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Gravity waves from fronts and convection
2) Globally spectral versus multiwave parameterization schemes
Globally spectral schemes,
Use that the observed GWs vertical (m-)spectra have a quasi-universal shape,

with a m-3 slope for the M>M™ part of the spectra that correspond to breaking waves
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Gravity waves from fronts and convection
2) Globally spectral versus multiwave parameterization schemes

Globally spectral schemes,
Use that the observed GWs vertical (m-)spectra have a quasi-universal shape,

with a m-3 slope for the M>M™ part of the spectra that correspond to breaking waves
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Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

Classical arguments: see Palmer et al. 2005, Shutts and Palmer 2007, for the
GWs: Piani et al. (2005, globally spectral scheme) and Eckeman (2011,

multiwaves scheme)
1) The spatial steps Ax and Ay of the unresolved waves is not a well defined concept

(even though they are probably related to the model gridscales ox dy). The time scale of
the GWs life cycle At is certainly larger than the time step (6t) of the model, and is also
not well defined.

2) The mesoscale dynamics producing GWSs is not well predictable (for the mountain
gravity waves see Doyle et al. MWR 11).

These calls for an extension of the concept of triple Fourier series, which is at the basis

of the subgrid scale waves parameterization to that of stochastic series.

o0

= Cw' where C,=1

n=1 n n n=1

The C 'ns generalised the intermittency coefficients of Alexander and Dunkerton (1995), and
used in Beres et al. (2005).




Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

For the W', we use linear WKB theory of hydrostatic GWSs, and treat the breaking as if
each w', was doing the entire wave field (using Lindzen (1982)'s criteria for instance):

w' =R

b b
n n n

\/\A/n(Z)eZ/ZHei(k”XH”y_w”t)} k [ W,  chosen randomly

WKB passage from one level to the next with a small dissipation (Eliasen Palm flux):

-~ k 1+sign(Q(z+82)-Q(z))|.,. [|= LI \gﬂ Ty
F(z+dz)==sign(Q) Min||F(z)le P, ——€ S
i / 2 / 2N / i
tical level Eliasen-Palm theorem Break
Critical leve with dissipation reaking
S,,k”: Tunable parameters
| | Vertical wavenumber O=w—-k-Uu Intrinsic frequency

m=——
(2

Few waves (say M=8) are launched at each physical time step (6t=30mn), but their effect
IS redistributed over a longer time scale (At=1day), via an AR-1 protocole:

ou | _Ac—stfou| |, st 5 10F,

Ot | ows At \ Ot )y, MAt“n=1p Oz

t+8¢t




Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

P,

P'=) C,P, where p —g|p i w0  taking =P,

The subgrid scale standard deviation of the
precipitation equals the gridscale mean

Distributing the related diabatic forcing over a depth Az it is quite easy to place the forcing in
the right hand side of a “wave” equation:

' DT —Z2 /A7 p) RL . — 7’ IA7
oc | Py 20y |2 pr8 > 2y sNw=—TrpE
P\ dt dz Az k pHc, Az
EP-flux at the launch level:
ok 2 —m’AZ 2
- n n € RLW PZ
nl= Fr |~ uw r
kn erCP

NQi/

New tuning parameter (could be a random number)

. N |k S
kn,ln,(ﬂn Are still chosen randomly m=—"2"0Q=w —k-U




Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

Offline tests with ERAI and GPCP

G =24 S=0.25 Precipitations and surface stresses averaged over 1week
uwe e e (1-7 January 2000) Results for GPCP data and ERAI
k*=0.02kmr1, . .
m=1kg/m/s oo a) Precipitation Kg.s*day™ oo Kg.s™*day*
Dt=1day and M=8 e S T I N
Dz=1km (source depth~5km) s Bk & n ¥ 1 /(
RASA"N: Y. < - d i [
The CGWsstressis now well : - q ¥
distributed along wherethere ] M
IS strong precipitations oy §a oS
It isstronger on averageinthe | b) Surface Stress amplitude (mPa) mPa

tropical regions, but quite
significant in the midlatitudes.

The zonal mean stress comes | = fug./;
from very large valuesissued | .| A"
from quite few regions. :

60ST

90S T T T T ’ T
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Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

Offline tests with ERAI and GPCP
Benefit of having few large GWsrather than a large ensemble of small ones:

Real precip. Stress amplitude (Cl=2mPa)

Uniformized precip. Stress amplitude (Cl=2mPa)

CGWs
stress
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Lott and Guez, JGR 2013
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Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

Online results with LMDz

LMDz version with 80 levels, dz<1km
In the stratosphere

QBO of irregular
period with mean
around 26month,

20% too small amplitude

Westerly phase lacks of connection
with the stratopause SAO

a) LMDz with convective GWs
0.1 |"1 t; : r ;| ; ¥ IH-.E-EJ‘!..,*.E NN
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Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

Online results with LMDz
Histogram of QBO periods

Relatively good spread of the periods 30+

taking into account that it is a forced
simulation with climatological SST
(no ENSO)

Periods related to the annual cycle
(multiples of 6 months) are not favourec
probably related to the weak relations
with the SAO

% of occurence

20+

Tl

@ LMDzwithG =24 (Cycles: 39. Mean: 26 month)
B Radiosondes (1953-2012) (Cycles: 19, Mean=27.75 month)

nK

Lott and Guez, JGR13
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Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

SAQO:
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Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

Composite of Rossby-gravity waves with s=4-8

Equatorial waves: Temp (CI=0.1K) and Wind at 50hPa & lag = Oday
ERAI 21, 11 cases
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. it L] " : S F ot
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Gravity waves from fronts and convection
3) Stochastic GWs scheme, application to convection

Equatorial waves.

Remember that
when you have
No QBO, the zonal winds are
negative, , the
planetary scale Kelvin wave
Becomesto strong

(the composite method is
described
in Lott et al. 2009)

Zero longitudeline arbitrary

Lott et al. 2012 GRL

Composite of Kelvin waves with s=1-6
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Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

For waves from front, the situation is more complex because it is the large scale
flow itself that produces a dynamical “ageostrophic” forcing. In the response to this
forcing it is still an issue to determine the part that is constituted of GWs from the

balanced part.

Some nevertheless uses this frontogenesis function as an indicator. For instance in
Richter et al.~(2010), it is said that when

1 o0l 1 du vtang
acosq OM | \acosg OA

\acosg Oh

F=—

(159 1 0v

09| lado
6v 1 6u+utancp
acosQ o) a0 g

190
a 0g

Exceeds 0.045 (K2 (100km)-2 h-1), GWF=1.5 mPal!

Justification for being so vague :
“the relation between frontal characteristics and wave amplitude have not been

established to date”
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Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

Simulations to support these parameterizations:

- /Upper level
warm front

Figure 16. As Figure 2(b), but from a simulation with doubled horizontal
resolution (Ax = 10km).

Results confirmed by much
higher resolution simulations

Plougonven Hertzog and Guez (2012)

O'Sullivan and Dunkerton (1995)




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

2D simulations of frontogenesis (Reeder and Griffiths 1995)

Initial Conditions: Formation of the upper level front
Transverse wind and potential T \F
3@ . () e = . THE——
25. ——
e 20, E= X L= =
20, T . e
9_%, 5. s 18 i
1@. 5. ~3 ;
3. - @ . 1 |
2. -2000. -1000. B. 1000. 2000. 3000.
-2000. -1000@. @. 1@p0. 2000. 3000, x (km)
x (km)

There is also a background along wind “ e
shear 20,
£ s

The waves are emitted from the front, a place
characterised by pronounced potential vorticity g
anomalies. -2000. -1000. @. 100@. 2000. 3000.

x (km)




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

All these processes are somehow related to the well known “Geostrophic Adjustment”
Problem.

In the “classical adjustment” an initial unbalanced flow radiates GWs
as it returns to a balanced situation. In this case, the initial imbalance is the
ultimate source of the GWSs: the problem is to know what causes this imbalance
(Lott, JAS 2003)

«Spontaneous adjustment» where a well-balanced flow radiates GWs
in the course of its evolution. Here the adjustment itself is the GWSs source.

In the two cases, there is at the place of largest emission a pronounced PV anomaly,
either it is present because the initial conditions are highly perturbed, or
It is produced internally

But we know that PV anomalies can spontaneously emit Gravity Waves,
and we have exact quantitative estimate of this emission
(Lott et al., 2010, 12012). So we can use the PV anomalies themselves
as predictors of the GWs emission.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=—36hrs

Free radiation (no bound)
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Longitude

Free radiation (no bound)

For the 2D results: Lott, Plougonven and Vanneste, JAS 2010.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=—24hrs

Free radiation (no bound)
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For the 2D results: Lott, Plougonven and Vanneste, JAS 2010.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

Free radiation (no bound) !
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For the 2D results: Lott, Plougonven and Vanneste, JAS 2010.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=—6hrs

Free radiation (no bound)
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For the 2D results: Lott, Plougonven and Vanneste, JAS 2010.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified

General setup:
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=0hrs

Free radiation (no bound)
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For the 2D results: Lott, Plougonven and Vanneste, JAS 2010.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=6hrs

Free radiation (no bound)
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For the 2D results: Lott, Plougonven and Vanneste, JAS 2010.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=12hrs

Free radiation (no bound)

Z |

| Uo(z)_ Upward IGWs

"Inertial" Layer

r-\PV Anom—alyX
w

o
E
T
Pt
[ |

"Inertial" Layer

10
8,(2) Downward IGWs SW 4W 3W 2W 1w 0 1E 2E 3E 4E SE
Longitude

Free radiation (no bound)

For the 2D results: Lott, Plougonven and Vanneste, JAS 2010.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=24hrs

Free radiation (no bound)

Z |

| Uo(z)_ Upward IGWs

"Inertial" Layer

r-\PV Anom—alyX
w

o
E
T
Pt
[ |

"Inertial" Layer

10
8,(2) Downward IGWs SW 4W 3W 2W 1w 0 1E 2E 3E 4E SE
Longitude

Free radiation (no bound)

For the 2D results: Lott, Plougonven and Vanneste, JAS 2010.




Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f =cte), stratified
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Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

The complete solution can be reconstructed from a single monochromatic solution:

W (2,9, 2,8) = g (k, 1, w) W (§)el b=

E=0 Ordinary critical level
kup(z) — w (Intrinsic frequency=0)

kA
= (=)

/ E=-1,+1 Inertio critical levels

§

(Intrinsic frequency =-f, +f )

Its vertical structure satisfies the PV conservation EqQ:

(at + ﬁ[]‘93:)
Disturbance PV

W W 2
£ W§§+( _5) +(2wﬂ) Ja+A N
¢ :

A ¢’ :

QG PV: f0.0" + 00, (0,0 — D)

Richardson number J=N2/ A2 : Hor. Wavenumber ratiov =1/k
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4) GWs from front via a “smoking gun” approach

The canonical solution W(E_,) corresponds to a 5(&)-PV distribution:

Wy 2 W J(1+ 2 .
w +( ) +( ) - W= ()
55 éz ¢ 62 5 62

J=5, 1 vikgl
l{} ! | ! I j I | I | 1 | 1
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................ In &=1 the CL continuation
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e 1] S R N i »
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........................... S &
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4) GWs from front via a “smoking gun” approach

5 2 5
W (g) for various dJ, |V|<<1, QG sols are in blue L+ V(0L Vo) E‘e—v-f(lw—)\ﬂ
2 (J(1 +12))*

J=2 J=10
l{) T | f T T | T | T | T | T l{} T T T 1 I T T T T | 1 T
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| — — Imag(W) — — Imag(W}
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When -1<€<1 W is well predicted by the QG theory.

o—VJ(1+1?)
J(1+ v?)

This could be the predictor of the GWs amplitude (If we assume that
at the inertial level the signal becomes a GW and is not attenuated).

The QG value near the inertial levels (E=-1,+1) is
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4) GWs from front via a “smoking gun” approach

The non dimensional Gravity Wave amplitude in the far field is easy to predict:

— /24 J(1+12
e T/\/<+Ij)e_”ﬁ/2

2J(1 + yg) -a ~CL attenuation

B ~

/
~QG signal at the Inertio CL
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[ — | il r &
< E y 2 when 1<J<10
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[ 27 e T
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Gravity waves from fronts and convection
4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f=cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=—36hrs
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General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f=cte), stratified
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4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f=cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (ecm/s) and PV (0.1 PVU) at t=—6hrs
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4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f=cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).
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4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f=cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).
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4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f=cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=12hrs
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4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f=cte), stratified
(BV freq N=cte) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=24hrs
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4) GWs from front via a “smoking gun” approach

General setup: A 3D (x,y,z) PV anomaly advected in a rotating (f=cte), stratified
(BV freq N=ct e) shear flow (vertical shear A=cte).

W (cm/s) and PV (0.1 PVU) at t=36hrs

10
SW 4w 3w 2w 1w 0 1E 2E 3E 4E 5E
Longitude
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4) GWs from front via a “smoking gun” approach

The wave stress is predictable in closed analytical form:

2 Y
FrL9 (nq.o, 8"
fe N / '
\ Characteristic depth
PV anomaly of the PV anomaly

Valid for various PV distributions, and over long time scale (compared to the Y2 hour interval
at which subgrid-scale parameterisation routines are updated)

We next take for the PV (d the GCM gridscale PV anomalies (as a measure of the subgrid
scales one, again a “white” spectrum hypothesis)

For O, the GCM's layer depth.

Stochastic treatment of the K's, (J's, ect....
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4) GWs from front via a “smoking gun” approach

The “smoking gun” theory predicts about the right amount of drag compared to a highly

tuned globally spectral scheme (January, all in m/s/day)

Globally spectral scheme
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4) GWs from front via a “smoking gun” approach
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4) GWs from front via a “smoking gun” approach
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On line test with LMDz GCM
(de la Camara and Lott 2015)
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4) GWs from front via a “smoking gun” approach

As we now have stronger annual cycles in the GWs launched fluxes, we need to look
at element of the annual cycle in the stratospheric circulation that are still in error in

present day GCMs.

a1 ] ERAI
L LMDz=FC
- LiOz<HGC
2 1 Descent of the zero zonal mean
§ zonal wind lin at 60°S
£ . = (Timing of the SH vortex break-down)
= |
1K
O] Eiaw O

On line test with LMDz GCM
(de la Camara and Lott 2015)
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4) GWs from front via a “smoking gun” approach

AxCO2 +4K SST experiments, results for October
(month of the SH stratospheric vortex break-up)

Zonal mean Present Climate Future Climate
Zonal WI nd OCT 20-year U(m/s) Source—-GWD OCT 20-year U(m/s) Source-GWD 4xCO, SST+4K
80km F 80km
| ™ Break-up
delayed
50km — ﬁ/!‘.iOkW
B Surface
20km . Impact
.
-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
OCT diff U(m/s) o = 0.01 NoSource-GWD OCT diff U(m/s) o = 0.01 Source~GWD
| 80km s  80km .
Difference 40 40 _
future-Present , ” =l Difference
without  50km Q‘ ‘ 50km future-present
GWs i | ° ° with
sources 20 . 1-20 GWs
20km f 4 —40  20km X _40 sources
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5) Tests against observations

GWs from the scheme: www.lmd.polytechnique.fr/VORCORE/Djournal 2/Journal .htm

Offline runs using ERAI and GPCP
data corresponding to the
Concordiasi period.

Important: Satellite (partial)
observations in the tropics
support what is shown next.

:GOOgle

CONCORDIASI (2010)

Rabier et al. 2010 BAMS

19 super-pressure balloons launched from
McMurdo, Antarctica, during Sep and Oct 2010.

The balloons were at ~ 20 km height.

Dataset of GW momentum fluxes (as by
www.Imd.polytechnique.fr/VORCORE/Djournal 2/Journal .htm Hertzog et al. 2008)
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5) Tests against observations

70's-90's observations (vertical soundings) Recent balloon and satellite obs.

L ong-term averages of vertical profiles show well- Show intermittent GW fluxes
defined vertical wavenumber spectra Hertzog et al. (2012).
Van Zandt (1982), Fritts et al. (1988), Fritts& Lu (1993) ,
10
10” E:::'IF"I ’ l 1 | ’ ’ 8 o mean 90" perc 99" perc ]
n':.:._..,'_fl.",mn E) 10™" _L Smooth 2.1 4.3/35% 11.8/ 8% -
ot L * 5 i
g‘- ol 8 10—2 | \"nn |
W S
NE o > 10731 i
£ o 3
3 o]
o' - 'g 107* - E
oo & :
o ol 1073 . I e
Oom & 2t ’CP""! 3?“3“’?': S— 0 20 40 60
sad® 0% 200* Sadt 0% 200® Sw0® 107 2x0?  Skig Total momentum flux (mPa)

WAVE NUMBER (cycles m '}

Dewan& Good 1986 JGR
Property used in global “spectral schemes’

Hines (1997), Warner & Mclntyre (2001), Scinocca (2003)

Hertzog et al. 2012 JAS

Property justifying stochastic schemes
Lott et al. (2012), Lott& Guez (2013)

Can these approach be reconciled?
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5) Tests against observations

Intermittency of GW momentum flux

The stochastic scheme parameters can be tuned to produce fluxes as intermittent as
in balloon observations.

PDF Absolute momentum flux

(~20km height) :
_____Concordiasi balloonsi|:
over Ocean :

Occurrence frequency

0O 25 50 75 100 125 150 175 200 225 250
(mPa)

10

Remember that intermittency isimportant because it produces GW breaking at
lower altitudes (Lott& Guez 2013)

dela Camara et al. 2014, In press.
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5) Tests against observations

IMaividudl periodogrdiiis O1'Gvv UIIEIQ]

Vertical spectra of GWs enerqy « 107 Produced by offline runs of the scheme
. T 4 . . ‘ . . . - I

35 ___________ S |
The observed “universal spectra’ can be g’
obtained with a“ multiwave scheme” as a =
superposition of individual periodograms S
of GW packets. £
Average of
periodograms
-
N\E/
o 10";| —— Spatial average(polarcap)| N\
=l —— Spatial average (global) | N\
10°L time average (lat =60S) |........
| —a Nm? G NS
1 . P R IR . 1
dela Camara et al. 2014, In press s 10 e -

vertical wavenumber (c/m)
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5) Tests against observations

What causes the intermittency?
Sources, like P* for convection or &2 for fronts have lognormal distributions
(P precipitation, & relative vorticity)
For waves produced by PV see Lott et a.~(2012)

(=]

10 [ A} Squared precipitation 10 B) 5_,2 at 8.5 km
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Results for intermittency suggest to relate the GWSs to their sources

dela Camara et al. 2014, Submitted
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6) Perspectives

Will this physically based stochastic approaches increase the spread of climate
Simulations?

For instance via an improvement of the year to year variability of the SH
stratospheric winter vortex breakdown?

Now that the GWs are tied to the tropospheric weather, we can address their contribution
to the climate change in the middle atmosphere

Does our unbalanced responses to upper-level PV anomalies modify the triggering of
surface synoptic waves?

Extent stochastic methods to mountain waves?



