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Abstract Trade-wind clouds exhibit a large diversity of spatial organizations at the mesoscale. Over
the tropical western Atlantic, a recent study has visually identified four prominent mesoscale patterns of
shallow convection, referred to as flowers, fish, gravel, and sugar. We show that these four patterns can be
identified objectively from satellite observations by analyzing the spatial distribution of infrared brightness
temperatures. By applying this analysis to 19 years of data, we examine relationships between cloud
patterns and large-scale environmental conditions. This investigation reveals that on daily and interannual
timescales, the near-surface wind speed and the strength of the lower-tropospheric stability discriminate
the occurrence of the different organization patterns. These results, combined with the tight relationship
between cloud patterns, low-level cloud amount, and cloud-radiative effects, suggest that the mesoscale
organization of shallow clouds might change under global warming. The role of shallow convective
organization in determining low-cloud feedback should thus be investigated.

Plain Language Summary Satellite imagery shows that clouds in the trade-wind regions
exhibit a large diversity of patterns. Over the tropical Atlantic close to Barbados, the population of
low-level clouds can organize in different ways, adopting patterns evocatively referred to as “flowers“,“fish”
,“gravel,” and “sugar.” This study shows that these different patterns, originally identified subjectively, can
be recognized more objectively from space measurements of infrared radiation. It also shows that the
relative occurrence of these different patterns relates to the strength of the trade winds near the ocean
surface and to the stability of the lower atmosphere. Finally, it shows that each pattern is associated with
a different cloud amount and thus impacts the radiative cooling of the Earth differently. These results
suggest that under global warming, the change in environmental conditions might perturb the frequency of
different patterns, which might affect the Earth's radiative response to warming in a way that has not been
previously considered.

1. Introduction
Shallow cumuli are ubiquitous over the world ocean, and therefore their sensitivity to a change in environ-
mental conditions has the potential to greatly influence Earth's radiation balance and climate sensitivity.
Actually, the response of trade-wind cumuli to warming constitutes a primary source of uncertainty in cli-
mate model estimates of cloud feedbacks (Bony & Dufresne, 2005; Medeiros et al., 2015; Vial et al., 2013).
During the last decade, much progress has been made in understanding the mechanisms through which
trade-wind cumuli could respond to warming (Bretherton, 2015; Klein et al., 2017; Rieck et al., 2012; Vogel
et al., 2016). However, despite having long recognized that shallow convective clouds are patterned—or
organized—on the mesoscale in many different ways (Agee, 1987; Malkus & Riehl, 1964), the role that this
organization might play in cloud feedbacks remains largely unexplored (Nuijens & Siebesma, 2019; Vial
et al., 2017). Thus, it remains an open question as to whether the mesoscale organization of clouds, which
is left out of most parameterizations and the many large-eddy simulations over small domains, influences
how shallow convective clouds respond to warming.

To help answer this question, here we first explore whether the observed organization of shallow convec-
tion can be linked to variability in large-scale environmental conditions and whether the different patterns
of organization imprint themselves differently on the radiation budget. We do so by using observations over
a region of the North Atlantic trades (windward of Barbados) where the shallow clouds are known to be
representative of the broader trades (Medeiros & Nuijens, 2016) and where the mesoscale organization of
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Figure 1. (a) Illustration of the four prominent cloud patterns of shallow convective organization pointed out by
Stevens et al. (2019) over the tropical western Atlantic near Barbados. The four satellite images (48–58◦ W, 10–20◦ N)
are derived from MODIS imagery. (b) Characterization of the shallow convective organization using infrared
geostationary satellite data through two metrics: a convective organization index (Iorg) and the mean object size (S).
The lower and upper terciles of Iorg and S define four classes of mesoscale organization (Quadrants A, B, C, and D). (c)
Relative occurrence of the four cloud patterns defined by Stevens et al. (2019) in each quadrant of the (S, Iorg)
distribution.
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shallow clouds has been well characterized (Stevens et al., 2019). During boreal winter, this region is asso-
ciated with sea surface temperatures (SSTs) of 26 to 28 ◦ C, a moderate large-scale subsidence in the free
troposphere (about 25 to 30 hPa d−1) and a predominance of shallow clouds (Stevens et al., 2016). In this
region, the prominent patterns of organization do not correspond to the classical and well-characterized
open and closed patterns of mesoscale cellular convection found over colder oceans (McCoy et al., 2017;
Wood & Hartmann, 2006). Rather, shallow clouds in the trades appear organized in a less regular fashion,
on scales ranging from 20 to 2,000 km. By inspecting 10 years of satellite imagery, Stevens et al. (2019) identi-
fied four recurrent patterns that they labeled “flowers”, “fish” , “gravel,” and “sugar.” In their classification,
sugar consists of a dusting of very fine scale clouds with small vertical extension, gravel, of clouds organized
along lines or arcs defining cells with intermediate granularity, sometimes looking like cold pools. Fish,
were so named due to the appearance of a fishbone-like skeletal network of clouds separated by well defined
cloud-free areas, and flowers denoted the presence of larger, seemingly more stratiform, cloud structures in
the form of very large but dispersed closed cells. Examples of these four patterns are provided in Figure 1a.

Considerable daily and interannual variability in the appearance of the patterning (Stevens et al., 2019)
offers an opportunity to investigate its co-variability with large-scale meteorological conditions. Even so, the
relatively weak variability of the large-scale environment (e.g., 90% of SST variations are weaker than 2 K)
requires a record longer than the 10 winter seasons already classified. To access a longer record, we first
attempt to identify the mesoscale patterns using an objective methodology and use this for exploring the
co-variability among patterns, their radiative effects, and the large-scale environment in which they form.
We do so by first demonstrating (section 2) that the four prominent patterns of cloud mesoscale organiza-
tion pointed out by Stevens et al. (2019) project well onto a simple characterization of the spatial variability
of infrared brightness temperatures measured from satellite. Then, in section 3, we investigate relationships
between the four cloud patterns and the large-scale environment in which they form. Finally, a summary
of the main findings and a discussion of their implications for understanding low-cloud feedbacks are
presented in section 4.

2. Classification of Mesoscale Organization Patterns
We follow Stevens et al. (2019) by analyzing shallow clouds over the tropical Atlantic Ocean east of Barba-
dos (48–58◦ W, 10–20◦ N) during the boreal winter (DJF, 1 December to 28 February), for the period from
December 2000 through February 2019. Our analysis is, however, based on 3-hourly infrared (11 μm) bright-
ness temperature (Tb), gridded (0.07◦) data from the GridSat-B1 data set (Knapp et al., 2011). The calibration
uncertainty of Tb is less than 0.5 K and its stability better than 0.1 K/decade. To avoid situations obscured by
occasional cirrus associated with deep convection over South America or within the ITCZ, we restrict our
analysis to images for which the 25th percentile of Tb is higher than 285 K. Pixels for which 280 K ≤ Tb ≤

290 K are associated with the presence of marine low-cloud objects. This definition is purposefully conser-
vative to exclude some of the thinnest cloud features that may correspond to evaporating cloud fragments.
The threshold of 290 K corresponds to the temperature of cloud tops around 1 km, near the penetration
depth of the most buoyant surface parcels (Stull, 1988; Vogel et al., 2019), and somewhat above the hazy
layer of cumulus debris near cloud base. Finally, cloudy areas (or cloud objects) are defined through a near-
est neighbor segmentation (e.g., Tobin et al., 2012). Each object is subsequently identified by its centroid,
and area.

2.1. Organization Metrics
The population of cloud objects within the 10◦ × 10◦ area is characterized through a few metrics. Those
include the total number of cloud objects N within the domain, the total fractional area A of the domain
covered by shallow clouds, and a clustering measure, Iorg, defined by Tompkins and Semie (2017) based on
earlier work by Weger et al. (1992). Iorg compares the distribution of the nearest neighbor distances among
the centroids of objects to that expected for a random distribution of objects. Iorg = 0.5 corresponds to
randomly distributed centroids, while Iorg values significantly lower than 0.5 correspond to regular distribu-
tions, values higher than 0.5 correspond to “clustered” or “organized” distributions (supporting information
Figure S1). These metrics are calculated for each 3-hourly satellite image, and then daily-mean values are
computed.

The visual inspection of the day-to-day variability of cloud organizations suggests that at first order, the
diversity of patterns can be characterized by only two metrics: the mean object size, S = A

N
× 104, which
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distinguishes patterns associated with a predominance of small or large cloud objects, and Iorg. Over the
period 2000–2019, S and Iorg exhibit a large variability with fairly continuous distributions (Figure 1b). By
selecting situations that fall in the upper or lower terciles of both the S and Iorg distributions, we define four
classes, or quadrants, that we refer to as A, B, C, and D, and which, as we show below, match well with the
four cloud patterns identified by Stevens et al. (2019).

2.2. Cloud Patterns
Of the 900 images considered by Stevens et al. (2019), 815 were classified by at least one person as being dom-
inated by one of the four patterns, and 337 were classified robustly (consistent classification by at least four
people). To show that the cloud patterns are well delineated in the (S, Iorg) space, we consider all the robustly
classified images falling into one of the four A-B-C-D quadrants (154 images) and ask how frequently each
pattern (flowers, fish, gravel, and sugar) fall into each quadrant. Figure 1c shows that the four quadrants
of (S, Iorg) discriminate among the patterns reasonably well. “Flowers” occurs predominantly in Quadrant
A, “fish” in B, “gravel” in C, and “sugar” in Quadrant D. This is consistent with the visual impression that
the sugar and gravel patterns are mostly associated with small-scale cloud features while the flowers and
fish patterns are associated with more extended cloud features. According to the Iorg index, flowers and
gravel patterns are associated with a close-to-random distribution of cloud features, while the fish and sugar
patterns are associated with more clustered cloud objects.

The way in which the patterns distribute themselves in the (S, Iorg) space is largely intuitive, the one excep-
tion being the association of sugar with large values of Iorg. As explained above, the cloud objects selected by
the chosen brightness temperature thresholds do not correspond to the entire cloud population that exceeds
the lifting condensation level, but only to the population of clouds whose top reaches the 290 K isotherm
(about 1 km altitude). Sugar situations are characterized by the predominance of very fine scale clouds of
very small vertical extent (Stevens et al., 2019). The rare active clouds that reach the 290 K isotherm often
appear as isolated, so that their spatial distribution within the 10◦ × 10◦ area is characterized by a large Iorg.
Whereas flower and sugar are clearly separated classes, fish and gravel patterns show some overlap with
flowers and sugar, respectively, an ambiguity that Stevens et al. (2019) also found in the visual classification.

Given the satisfactory correspondence between the visually identified patterns and the four (S, Iorg) quad-
rants, in the following we use the objective labeling to associate scenes distributed in Quadrants A, B, C, and
D with “flowers”, “fish”, “gravel” and “sugar,” respectively. Adopting this methodology allows us to use the
full GridSat-B1 record to diagnose the daily occurrence of the four cloud patterns and their co-variability
with environmental conditions.

2.3. Robustness of the Classification
We test the robustness of the classification by repeating it using higher resolution MODIS (1 km) channel
31, and GOES-16 (2 km) channel 13 brightness temperatures (Tables S1 and S2, Figures S2 and S3). MODIS
provides twice daily data for the 2000–2019 period. From GOES-16, we use 3-hourly data for the last two
winter seasons. The higher-resolution data changes the number of cloud objects, the mean cloud object size,
and the absolute value of Iorg (Figure S4). However, the day-to-day variability of the Iorg, A and S metrics,
correlates well among the different data sets (Table S3). Despite their very different spatial resolution (8
km vs. 2 km), GridSat and GOES-16 classifications correlate best. For the case of Iorg, the geostationary
data (GOES and GridSat) correlate less well with MODIS, suggesting that Iorg may vary more with temporal
sampling than it does with resolution.

The daily time series of mesoscale patterns (A, B, C, and D labels) determined from the upper and lower
terciles of the MODIS data (Figure S2) correlate well with those identified using GridSat data (Table S3).
The robustness of the classification provides further justification for our association of the upper and lower
terciles of the (S, Iorg) distributions (the four quadrants) with “flowers”, “fish”, “gravel” and “sugar.”

3. Dependence of Patterns on the Large-Scale Environment
To explore how large-scale environmental conditions vary among the quadrants (patterns), we use 6-hourly
reanalyses of meteorological data as provided by the ERA-interim product (Dee et al., 2011) for each DJF
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Figure 2. Large-scale environmental conditions (daily-mean SST, Vs, and EIS) composited over the 2000–2019 period
as a function of the mesoscale cloud patterns (FL = flowers; FI = fish; GR = gravel; SU = sugar) inferred from GridSat
data. Black markers indicate the mean of the distribution, thin vertical bars the range between the 25th and 75th
percentile values, and thick lines ± the standard error on the mean.

season from 2000 to 2019 and for several environmental variables: the SST, the near-surface wind speed
Vs, the zonal and meridional components of the surface wind us and vs, the zonal wind shear between
700 hPa and the surface, the large-scale vertical velocity at 700 hPa, the lower-tropospheric stability (LTS,
defined as 𝜃700 − 𝜃1,000, where 𝜃 is the potential temperature, Klein & Hartmann, 1993), and the estimated
inversion strength (EIS, Wood & Bretherton, 2006), defined as EIS = LTS − Γ850

m (z700 − LCL) where Γ850
m is

the moist-adiabatic potential temperature gradient at 850 hPa, z700 is the height of the 700 hPa level, and
LCL is the height of the lifting condensation level assuming a surface relative humidity of 80%. We also
use layered free tropospheric relative humidity data from the Megha-Tropiques satellite (Sivira et al., 2015).
Each of these variables is computed as a daily-mean average over the domain.

3.1. Day-to-Day Variability
To test whether different environmental conditions are associated with different patterns, a quadrant com-
posite of each daily-mean environmental variable is constructed. Most of the environmental variables
considered do not differ significantly, or differ only marginaly, from one pattern to another (Figure S5). How-
ever a few variables, namely Vs and EIS (equivalently LTS which correlates nearly perfectly [0.99] with EIS,
but we adopt EIS because it generalizes to warmer climates more readily), were discriminating (Figure 2).

The analysis shows that “flowers” are associated with relatively cold SSTs, strong surface winds, and greater
stability. “Fish” pattern were found over more moderate SSTs, weaker winds, and strong stability. “Gravel”
was likewise associated with moderate SSTs but strong surface winds and low stability. “Sugar” prevailed
over the warmest SSTs, when surface winds were weak and stability was low. It thus appears that EIS (or

Figure 3. Scatter plot of daily-mean values of EIS and near-surface wind Vs over 2000–2019. The mesoscale cloud
patterns classified as flowers, fish, gravel, or sugar using (left) GridSat or (right) MODIS observations are indicated in
colors. Also reported is the mean (EIS and Vs) value computed over the whole period for each cloud pattern. Thin bars
indicate the 25th and 75th percentiles of the distributions, and thick bars indicate ± the standard error on the mean.

BONY ET AL. 5 of 9



Geophysical Research Letters 10.1029/2019GL085988

Figure 4. Interannual anomalies of (a) the organization index (Iorg) and (b) the mean cloud object size S computed from GridSat or MODIS observations over
the period 2000–2019 during DJF (the correlation between GridSat and MODIS time series is 0.90 for Iorg and 0.78 for S). Interannual evolution of (c) Vs and (d)
EIS derived from ERA interim for the same period. Note that in (a–d), the year is defined by the January–February months of the DJF season (e.g., 2010
corresponds to December 2009–February 2010). The shading represents ±1 standard deviation of daily-mean values around the DJF mean. (e) Examples, for a
few DJF seasons, of the daily cloud patterns identified from GridSat data represented as a function of the daily (EIS and Vs) conditions of that season (the gray
lines are just visual guides).

LTS, Figure S6) best discriminates the patterns with small versus large S: the patterns associated with large
cloud objects (flowers and fish) predominantly occur in situations with a more stable lower troposphere.
This is consistent with the expectation that larger stratiform cloud fields are to be expected in situations
with enhanced stability (Klein & Hartmann, 1993; Wood & Bretherton, 2006). Vs best discriminates the type
of convective organization (Iorg): Random to more regular organizations of cloud centroids (flowers and
gravel, both associated with low Iorg values) tend to occur when the trade winds are strong (Vs ≥ 8m s),
while the more “organized” distributions (sugar and fish) tend to occur when the trades are weaker. Overall,
the cloud patterns that correspond to the most contrasted S and Iorg metrics, namely, the flowers and sugar
patterns, are those that occur in the most contrasted environments. Repeating this analysis using the MODIS
classification (Figure 3) leads to similar conclusions.

3.2. Interannual Variability
The analysis of daily variability was extended to explore interannual variability by comparing year-to-year
variations of DJF means, each DJF mean being computed by filtering out the days obscured by upper-level
clouds or without cloud pattern classification. Once again, the variability of Iorg and S derived from
GridSat-B1 and MODIS data sets are consistent with each other (Figures 4a and 4b). The interannual rela-
tionships between these metrics and environmental conditions are also consistent with those found at the
daily timescale: Iorg anomalies exhibit a negative correlation with Vs anomalies, and S anomalies exhibit
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a positive correlation with EIS anomalies (Figures 4c and 4d, Table S4). On the other hand, the correla-
tion between these metrics and SST (whose time evolution is shown in Figure S7) is not significant at the
interannual timescale.

For each season, the relative prominence of the four patterns is consistent with the Vs and stability anoma-
lies of that season (Figure 4e). For instance, the 2009–2010 DJF season which was characterized by an
anomalously weak Vs (Figure 4c) and an anomalously strong stability (Figure 4d) was associated with a pre-
dominance of “fish.” In contrast, the 2013–2014 DJF was associated with a very strong surface wind and a
predominance of “gravel” and “flowers” patterns, while the 2017–2018 DJF was associated with weak sta-
bility and was mostly associated with “gravel” and “sugar.” The association between cloud patterns and
large-scale environmental conditions (as characterized by Vs and EIS) pointed out at the daily timescale is
thus able to also explain the year-to-year variations of the spatial organization metrics and the predominance
of a specific mesoscale cloud pattern (Figure S8).

4. Summary and Discussion
Stevens et al. (2019) showed, based on a visual and thus subjective classification, that the tropical western
Atlantic during boreal winter is associated with four prominent mesoscale patterns of shallow convection.
The present study shows that these patterns can be objectively identified based on the size and degree of
clustering of segmented cloud objects as identified from infrared brightness temperatures. The classifica-
tion is largely insensitive to the spatial resolution of the brightness temperature data: GridSat data with a
resolution of 8 km and MODIS data with a resolution of 1 km lead to very similar classifications.

The analysis of daily and interannual variations shows that the relative occurrence of the different cloud
patterns correlates strongly with two environmental factors: the strength of the near-surface wind speed
and the strength of the lower-tropospheric stability (Figures 3 and S2). Flowers tend to occur in windy (Vs
> 8 m s−1) and stable environments (EIS > 0.5 K), while sugar tends to occur in calm (Vs < 8 m s−1) and
unstable environments (EIS < 0.5 K). Fish appears to prefer calm and stable environments, while gravel
tends to occur in windy and unstable environments. These relationships beg a physical explanation. For
this purpose, data from the forthcoming 2020 EUREC4A (Elucidating the role of cloud-circulation coupling
in climate) field campaign should be well suited (Bony et al., 2017). With its large complement of air and
sea-going vessels in the same study region as examined here, EUREC4A will not only quantify the relation-
ship between cloud patterns and large-scale variables but also the circulation systems that connect the two.
These measurements should thus also help determine how much the mesoscale organization of shallow
convection has to be considered if one wants to understand and predict the response of shallow clouds to
changes in environmental conditions.

A closely related question is whether the mesoscale organization of shallow convection matters for
cloud-radiative effects. To shed light on this issue, we used daily estimates of top-of-atmosphere radiative
fluxes and cloud products from the CERES (Clouds and the Earth's Radiant Energy System) geostationary
enhanced temporally interpolated data set (Wielicki et al., 1996), along with low-cloud amount retrievals
provided as part of the same data set for the period 2001–2017. Low-level cloud amount varies by a factor of
two across the different patterns, and the net CRE associated with “flowers” is about double that of the sugar
pattern (Figure 5). At first order, the CRE (dominated by its shortwave component) varies linearly with the
low-cloud amount (Klein & Hartmann, 1993), so that radiative differences across the patterns are related
to differences in the low-cloud amount. However, unlike what has been found for other types of mesoscale
organizations of marine low clouds (McCoy et al., 2017), for a given low-cloud amount we do not notice sig-
nificant radiative difference among patterns. It suggests that over the western tropical Atlantic, changes in
the mesoscale organization of trade-wind cumuli primarily affect the top-of-atmosphere radiation budget
through associated changes in the low-level cloud amount.

Could this tight relationship between convective organization and low-cloud amount, or CRE, imply that
changes in cloud organization have the potential to influence cloud-radiative feedbacks? The large-scale
environment in which the trade-wind cumuli form might change under global warming. Climate models
predict EIS increases over the western tropical Atlantic as the planet warms (Qu et al., 2015). On the other
hand, the change in Vs remains uncertain, partly because the geographical pattern of surface warming can
act against the anticipated slow-down of the large-scale circulation (Ma et al., 2016). Indeed, in climate
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Figure 5. (a) and (b) same as Figure 2 but for the low-cloud amount derived from MODIS cloud products and the NET
cloud-radiative effect derived from CERES observations. (c) Same as Figure 3 but for daily-mean values of NET CRE
and low-level cloud amount.

change experiments run with the IPSL climate model (Dufresne et al., 2013), EIS always increases with
global warming over the tropical western Atlantic (by 0.1 to 0.7 K K−1 depending on the type of experiment
and model version), whereas Vs does not change in a robust fashion. Assuming that Vs and EIS remain
the main controlling factors of the mesoscale organization of shallow clouds in a perturbed climate, these
projections would suggest a more frequent occurrence of fish or flower at the expense of sugar or gravel with
global warming and thus a larger cloud fraction. This is in conflict with the prevailing idea, based on models
which do not account for mesoscale organization, that low-cloud amount will reduce in response to rising
SST (Klein et al., 2017). In our analysis, SST does not appear to be a strong controlling factor of the cloud
mesoscale organization on daily and interannual timescales (Table S2), but it remains an open question
whether it could play a bigger role in climate change. In either case, better understanding the extent to
which the mesoscale patterning of clouds affects their response to warming appears relevant to establishing
confidence in how clouds respond to warming as a whole.

Future investigations of this issue using numerical models that predict explicitly these different cloud pat-
terns and are able to reproduce the relationships discussed in this paper should help determine how much
the cloud organization is sensitive to SST, and how much it could affect the magnitude and even maybe the
sign of the change in low-cloud amount. This should fill an important gap in our understanding and our
assessment of low-cloud feedbacks under climate change.
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made available by the NASA CERES
group. ERA-interim reanalyses were
downloaded from http://climserv.ipsl.
polytechnique.fr/fr/les-donnees/
era-interim.html. Megha-Tropiques
retrievals of layered relative humidity
(Version 2 of the daily product L2B-RH
gridded at 1 × 1◦ for December
2011–February 2018) were downloaded
from http://www.icare.univ-lille1.fr/
mt/products. This project has received
funding from the European Union's
Horizon 2020 research and innovation
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Council Grant EUREC4A 694768,
CONSTRAIN Project 820829) and
from the Max Planck Society.
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X - 2 BONY, SCHULZ, VIAL AND STEVENS: MESOSCALE PATTERNS

Introduction In this Supporting Information, we provide a table reporting statistics

about the number of satellite images used for the cloud pattern classification (Tables S1

and S2), correlations between the cloud organization metrics computed with different

satellite datasets (Table S3), and a table comparing the daily and interannual correla-

tions between the cloud organization metrics and environmental conditions (Table S4).

We also provide a figure explaining how the Iorg index is computed (Figure S1), two fig-

ures comparing the brightness temperature fields derived from different satellite datatsets

for different types of mesoscale patterns (Figures S2 and S3), a figure showing how the

shallow convective organization patterns can be defined using different satellite datasets

(Figure S4), two figures showing different environmental variables composited by the four

mesoscale patterns of trade-wind cloudiness (Figures S5 and S6), a figure showing the

interannual variability of the sea surface temperature over 2000-2019 (Figure S7) and a

figure showing how the different cloud patterns relate to the surface wind speed and the

lower-tropospheric stability for each DJF season of the 2000-2019 period (Figure S8).
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Table S1. Frequency of occurrence (expressed in absolute and relative values over the 19

DJF seasons of 2000-2019) of days associated with low clouds, non-low clouds or missing images

(note that MODIS images are disregarded when the swath data do not fill completely the 58W-

48W,10N-20N area).

Total Low clouds Non low clouds Missing
GridSat N 1714 1343 312 59
(Dec2000-Feb2019) % 100 78.3 18.2 3.5
MODIS N 1714 1092 317 305
(Dec2000-Feb2019) % 100 63.7 18.5 17.8
GOES-16 N 180 151 16 13
(Dec2017-Feb2019) % 100 83.9 8.9 7.2

Table S2. Frequency of occurrence (expressed in absolute and relative values) of low-

cloud situations whose mesoscale pattern was classified as Flowers, Fish, Gravel or Sugar, or

not classified (because the Iorg or S metrics do not belong to the first or third terciles of their

distribution).

Low clouds Non classified Classified Flowers Fish Gravel Sugar
GridSat N 1343 746 597 142 134 152 169
(Dec2000-Feb2019) % 100 55.5 44.5 10.6 10.0 11.3 12.6
MODIS N 1092 581 511 48 194 173 96
(Dec2000-Feb2019) % 100 53.2 46.8 4.4 17.8 15.8 8.8
GOES-16 N 151 82 69 5 23 27 14
(Dec2017-Feb2019) % 100 54.3 45.7 3.3 15.2 17.9 9.3

December 11, 2019, 12:26am



X - 4 BONY, SCHULZ, VIAL AND STEVENS: MESOSCALE PATTERNS

Table S3. Linear correlation coefficients between the daily-mean metrics calculated with

different satellite datasets (the convective organization index Iorg, the mean cloud object size S,

and the total area covered by cloud objects A): GridSat-1B (8 km resolution, 3-hourly), GOES16

(2 km resolution, 3-hourly), MODIS (1 km resolution, twice-per-day). The last line reports the

% of images for which the daily mesoscale pattern (Flowers, Fish, Gravel or Sugar) is classified

consistently by two different datasets.

R(GridSat,MODIS) R(GridSat,MODIS) R(GridSat,GOES16) R(MODIS,GOES16)
(Dec2000-Feb2019) (Dec2017-Feb2019) (Dec2017-Feb2019) (Dec2017-Feb2019)

Iorg 0.61 0.65 0.84 0.61
S 0.76 0.89 0.88 0.90
A 0.87 0.90 0.97 0.92
Agreement (%) 76 82 70 90

Table S4. Linear correlation coefficients of Iorg and S (computed either from GridSat-B1

or MODIS data) with Vs, EIS and SST (derived from ERA interim reanalyses). Correlations

are computed for day-to-day variations within DJF, and interannual variations of DJF means.

Numbers are bracketed when the correlation is not statistically significant (p-value larger than

0.01).

Daily Interannual
Vs EIS SST Vs EIS SST

Iorg (GridSat) -0.57 (0.03) 0.23 -0.86 (0.41) (0.55)
Iorg (MODIS) -0.43 0.25 0.10 -0.78 (0.54) (0.36)
S (GridSat) (0.01) 0.54 -0.23 (-0.12) 0.48 (-0.14)
S (MODIS) (-0.05) 0.45 -0.10 (-0.09) 0.60 (-0.12)
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Figure S1. The Iorg index compares the cumulative density function of the nearest neighbor

distances among the centroids of cloud objects inferred from observations (NNCDF) to that

expected for a random distribution of objects. (left) NNCDF of the cloud objects detected from

GridSat observations of infrared brightness temperature for each type of cloud pattern (computed

over the 2000-2019 period). Most of the nearest-neighbor distances range from 10 to 100 km.

(right) Relationship (based on the whole GridSat dataset) between the observed and random

NNCDFs for each cloud pattern; the Iorg index is computed by integrating the area under the

observed NNCDF (Iorg = 0.5 corresponds to a random distribution).
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Sugar Fish

FlowersGravel

MODIS

MODIS

MODIS

MODIS

GridSat

GridSat

GridSat

GridSat

Figure S2. Sugar, Fish, Gravel and Flowers cloud mesoscale patterns as seen from the

instantaneous brightness temperature (Tb) field derived from the MODIS or GridSat dataset

over (58W-48W; 10N-20N). The spatial resolution of MODIS is 1 km while that of GridSat is

about 8 km. The 280 K and 290 K levels used to identify cloud objects are shown by white and

black contour lines, respectively (cloud objects appear in blue).
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Gravel
MODIS GridSat GOES-16

Sugar
MODIS GridSat GOES-16

Figure S3. Same as Figure S2 but for the Gravel and Sugar patterns seen from the instanta-

neous brightness temperature (Tb) field derived from the MODIS, GridSat or GOES-16 dataset

over (58W-48W; 10N-20N). The spatial resolution of MODIS, GridSat and GOES-16 are 1 km,

8 km and 2 km, respectively. The 280 K and 290 K levels used to identify cloud objects are

shown by white and black contour lines, respectively (cloud objects appear in blue).
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Figure S4. Definition of the shallow convective organization patterns using the first and last

terciles of the convective organization index (Iorg) and the mean cloud object size (S) derived from

(left) GridSat-B1, (middle) MODIS and (right) GOES-16 datasets. The GridSat-B1, MODIS

and GOES-16 datasets have a spatial resolution of about 8 km, 1 km and 2 km, respectively.

GridSat-B1 and MODIS data are available from December 2000 to February 2018, while GOES-

16 data are available from December 2017 to February 2019 only. By analogy with Figure 1, the

quadrants A, B, C and D and referred to as Flowers, Fish, Gravel and Sugar.

December 11, 2019, 12:26am



BONY, SCHULZ, VIAL AND STEVENS: MESOSCALE PATTERNS X - 9

Wind shear

m
/s

●

●

●

●

FL FI GR SU

0

1

2

3

4

5

6

●

●

●

●

700 hPa zonal wind

m
/s

●

●

●

●

FL FI GR SU

−10

−8

−6

−4

−2

0

2

●

●

●

●

w 700hPa

hP
a/

d

●

●

●
●

FL FI GR SU

15

20

25

30

35

40

45

50

●

●

●
●

RH 400−600hPa

%

●

●

●

●

FL FI GR SU

5

10

15

20

25

30

●

●

●

●

RH 650−700hPa

% ●

●

●

●

FL FI GR SU

10

20

30

40

50

●

●

●

●

RH 750−800hPa

% ●

●

●

●

FL FI GR SU

40

45

50

55

60

65

●

●

●

●

Figure S5. Large-scale environmental conditions (daily-mean wind shear, zonal wind at

700 hPa, large-scale pressure vertical velocity at 700 hPa derived from ERA interim reanalyses

during the DJF seasons of 2000-2019, daily-mean relative humidity in the layers 400-600 hPa,

650-700 hPa and 750-800 hPa derived from the Megha-Tropiques satellite during the DJF seasons

of 2012-2018) composited as a function of the mesoscale cloud patterns (FL=Flowers; FI=Fish;

GR=Gravel; SU=Sugar) inferred from GridSat data. Black markers indicate the mean of the

distribution, thin vertical bars the range between the 25th and 75th percentile values, and thick

lines ± the standard error on the mean.
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Figure S6. Comparison of the dependence of cloud patterns on two measures of the tropo-

spheric stability: the Estimated Inversion Strength (EIS) and the Lower Tropospheric Stability

(LTS). See Figures 2 and 3 for a more detailed explanation of the different symbols (EIS panels

are reproduced from Figures 2 and 3).
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Figure S7. Interannual evolution of the sea surface temperature derived from ERA interim

over 2000-2019. The shading represents ± one standard deviation of daily-mean values around

the DJF mean.
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Figure S8. For each DJF season: cloud patterns identified from GridSat data represented

as a function of the daily (EIS, Vs) conditions of that season. Each pattern is associated with

a different color. Grey markers correspond to days for which no cloud pattern was identified,

either because the area was not predominantly covered by low-level clouds, or because the (S,

Iorg) metrics were outside the A, B, C, D quadrants defining the different patterns. The grey

lines at EIS = 0 K and Vs = 7 m.s−1 are just visual guides.
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