Feedback gain functions in the Lorenz-63 model
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Complement to a Letter to Euro.Phys.Lett.
(informal research paper of the TEF-ZOOM collaboration')

As a reminder of the famous “butterfly effect”?, that proves how Poetry, Art and
Science together might be the future of mankind...
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FiGc. 1 — The Lorenz attractor.

Referring to the Letter, the only transfer variable here is ¢ = xy. This test-
variable corresponds to an interaction between the flow intensity and a temperature
difference between ascending and descending fluid particles. The original Lorenz
system is cast to its feedback-form as follows

_ _ Oyx = s(y — x)
atl‘ B S(y !L’) Feedback aty = (7”1’ -y — !L‘Z)
Oy = (rx —y — x2) — B — byt (1)
Oz = —bz+xy K 14
Y=Yy

by All and StepH.

Zfor non climatologist readers, the said “butterfly effect” does not refer to the double wing shape
of the Lorenz attractor, but to its chaotic behavior. Is this at the origin of most people describing
the attractor as butterfly wings shaped ?



The “nonlinear” feedback effect of the system on ¢ is computed with the Mini_ker
program (see manual in the web pages) using the extension Psi_t,
ko_pert_Type= 3 activated, and of course is depending on the starting point.
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F1G. 2 — CTLS feedback-effect p(0, 7).

The log-scaled function clearly shows an average linear increase following the
first Lyapunov exponent (A ~ 0.95), as well as the amplified zigzag preceding each
transition (notice that the z axis has been rotated to follow the log-Lyapounov
increase of the feedback function).

In comparison, the TLS-gain is the static function of the response-time to a step-
perturbing function applied at a particular point of the trajectory (Fig.3) :

At every point of the trajectory can be defined an autonomous system and its
response to perturbation. When this constant Jacobian matrices system is integrated
in open-loop mode, the feedback-gain is obtained.

In Mini_ker, this function is automatically computed using the spectral
decomposition described in the Letter.

One can notice that the TLS-gain always has real poles only, in three different
shapes

— negative with finite asymptote, see points 2, 6, 10;

— negative runaways, see points 12, 14, 16 then 20;

— the preceding one finishing up a positive runaway sequence (18 and 19);
we shall see that the short positive sequence is a characteristic of an end of transition
between the two wings of the attractor.

Stationary feedback-effect.

Contrary to the gain function, the feedback-effect shows oscillating sequences.
This means that the chosen transfer variable is at the origin of the oscillation of the
model, that disappears when the loop through this transfer is cut in the feedback
loop.
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FiG. 4 — TLS feedback effect p*(t,t + 7).

We now focus on an orbit (point A) first, and second when approaching, here a
double transition (point B) along the trajectory (Fig. 5). Notice that we are here
exploring a different trajectory than in the Letter.

On figure 6, we start at point A and examine a sequence of seven TLS-effect
responses ; the perturbing step has an amplitude of 10 for clarity.

The first response is a weakly damped oscillation, followed in 2 by a large
amplitude and large period oscillation; the period goes next to its more current
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Fi1Gc. 5 — Portion of the trajectory.

value in 3, and goes back to damped responses at the remaining points.
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Fic. 6 — Orbits and CTLS feedback effect.



We can also look at the full sequence of the poles (fig. 7). What is shown are the
feedback-effect Laplace-transform complex amplitudes, showing a systematic real
pole and a complex conjugate pair possibly degenerating in two real poles. Now the
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Fic. 7 — CTLS-effect and the population of TLS poles.

sequence along each orbit is quite clear : each orbit initiates an instable crisis that
starts with a three-real poles sequence (3RP), followed by a diverging oscillation
that becomes finally damped. The same full sequence is reproduced at each new
orbit, except that the three-real poles sequence becomes longer, corresponding to
the increase in amplitude of the CTLS-zigzag feedback effect.
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Fi1c. 8 — TLS feedback effect functions p®(t,¢ + 7).

Figure 8 illustrates the same TLS poles population when approaching the



transition (point B). One can see how the oscillating sequence is replaced by three
exponentials (one being unstable); then during the transition, the oscillations are
retrieved that seem to allow the system to recover a new orbiting sequence, but now
on the right wing.

1 Another portion of the trajectory (same as in
the Letter)

Figure 9 shows the same part of the trajectory as the one of the Letter, with
four orbits before transition. As already said in the Letter, the Lorenz system is
symmetric across z, so that the ¢ = xy variable is quite insensitive to the transition,
whereas it is conspicuous in the CTLS feedback function.
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Fi1c. 9 — Test variable trajectory in the Lorenz model and Feedback Effect.

Between points A and B, p(¢,0) shows oscillations of increasing amplitude,
corresponding to the nonlinear instability of the system. The revolution around an
orbit — one of the wings — involves “along” and “across” feedback effects in a zigzag
shape. We call “along” a sequence when the feedback response is positive, because
a positive perturbation in zy along an orbit can be considered as a force drawing
the point toward or away from central point (0,0). When positive, the response is,
roughly speaking, aligned along the perturbation. Conversely, a negative feedback
effect means that the response is, roughly speaking again, perpendicular — “across”
— to the perturbation, causing a rotational effect.

The four orbits show that the system reacts in the across way when heading to
apogees (away from 0,0), and in the along way when backing toward perigees (close
t0 0,0).

The more distinctive feature is the change in sign of the CTLS zigzag just before
transition : the along amplified reaction is now leading, followed by a strong across
effect near the apogee, finally resulting in the leaving of the left wing for the other.

Figure 10 illustrates the long-term effect of the same function. For clarity in
the collocation with transitions, the z variable is plot with a rotation to follow
the Lyapunov increase (x — x 4+ Art). The linear logarithmic increase is in average
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F1c. 10 — Long term feedback response (log scale) and z trajectory rotated along

the Lyapunov exponent.

following the Lyapunov exponent (Ar =~ 0.95). More surprising is the similar increase

of the zigzag amplitude.

The CTLS is clearly detecting the transitions, not only with an sudden increase
in the zigzag amplitude, but also with a change of sign of the leading bump, now
positive (fig. 9). We verified that among the different terms of the RHS of the system

no other test variable is showing the same reverse in sign (see Fig.21).

Analysis of a trajectory starting far from the attractor.
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Fic. 11 — Same as fig. 10 with initial conditions out of the attractor.

Figure 11 is analog to Fig. 10 for different initial conditions, chosen far from
the attractor — in fact, close to the point of no-convection of the left wing. It is
noticeable that the CTLS-effect shows a weak increase when out of the attractor.
That is observed each time the point leaves the attractor, see times : 35,48 et 73.

Clearly, the attractor is exerting its effect by “stabilizing” - that is, decreasing the

7



exponential growing — when outside of it, compared to the asymptotic behavior as
soon as the current point lies in the attractor.

These remarks are justifying the interest in the dynamics of the feedback
functions, with a detection of transitions and a behavior depending on some
“distance” to the attractor in the attractor basin. We will now consider the same
functions at a closer look at the system dynamics.

A ZOOM on the orbits before a transition

Let now examine four orbits going to transition. On Fig. 12, the x, y trajectory
is plot with error-bars, characterizing the CTLS feedback effect log-scaled. Error-
bars are the CTLS amplitude (log-scaled), plot as vertical when above the mean
Lyapunov increase (along effect, horizontal when under (across effect). Both orbits
are followed clockwise.

The first orbit shows the across effect only, when the point is orbiting around
the left-wing point of steady-convection (at center of orbits). Between point 1 and
2 on the fourth orbit, the point is decelerated toward perigee by the along reaction,
then accelerated when heading to the apogee. This suggest that the along effect is
caused by a repulsion from central point.

The transition is started by a strong across reaction after the apogee (5), and
the circulating point is again decelerated by repulsion from central point, but with
an offset that kicks off the point into the right wing. The end of the trajectory in the
figure shows a strong across effect corresponding indeed to a just following second
transition (not shown).
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F1a. 12 — CTLS response before transition (scaled, see text).

Finally, the preceding analysis of the nonlinear feedback features of the model
allow different interpretation, from global to close-up views, that in our belief totally
gustify the interest of computing such functions when a dynamical interpretation
of the behavior of a system 1is needed. Notice that the present analysis is not
based on physical interpretation of a feedback-loop structure at all. Of course, when



concerned with a physical process, the preceding interpretation is enriched with
physical mechanisms expressing their dynamics.

1.1 Comparison with stationary feedback effect

Let now illustrate the connections between stationary and non-stationary
feedback effects with two portions of the trajectory, looking at the complex
amplitudes of p functions in the Laplace domain. The elements of the spectral
decomposition are double-scalar products < cf | e; >< fi | b> in Eq. (9) of the
Letter with u(u) = i

Once a triplet of the model parameters is being given, one can imagine the state-
space as filled with poles and associated complex amplitudes of the TLS-feedback
effect — one can think of an analogy with Higgs bosons in the quantic vacuum.
The non-stationary response builds up grabbing these elements along the reference
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Fic. 13 — CTLS Feedback effect compared to TLS structure amplitudes.

trajectory. The way CTLS-functions build up is not intuitive — see the annex —
because the state-transition matrix is an infinite product of elementary stationary
ones.

Along the first revolution in Fig. 13, the non-zero complex amplitude is
responsible for the across (or rotational) response of the CTLS-effect. This is followed
by pure real amplitudes with an increasing trend. These are the “three real poles”
sequences marked on the figure. The duration of that type of sequence regularly
increases at each new revolution, until the transition phase is reached. After the
transition, the 3RP sequence shortens, but does not cancel. In fact, the second orbit
in the right wing leads to a new transition.

In the real space — that is, after inversion of Eq.(9) in the Letter, the stationary
feedback function o*(7) can be displayed as function of the response time 7, the point
of the trajectory being the starting point of the step-perturbation applied (7 = 0).
In Fig. 9, the CTLS-effect is given once for all with a scaling by exp(—\t). Each
TLS ¢° function is similarly scaled by exp(—Ap7).
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F1G. 14 — Different Feedback responses along two orbits after point A.

Figure 14 displays seven of those TLS-functions along the two first orbits (point
A). The first shows an unstable oscillation with a period comparable with the CTLS
double bump oscillation. Second and third TLS-functions are at beginning and end of
a damped oscillation sequence with slowly increasing period. At point 4, the period
is about four times greater than the shorter one, and ends with the flat portion
of the CTLS response. Around TLS 5, a short sequence of unstable oscillation is
preceding the rise of the CTLS zigzag. With TLS-(6) and (7), damped oscillations
are recovered, announcing the following flat section of the CTLS.

It is remarkable how the nonlinear effects of the model are “absorbing” the
unstable TLS-effects, but also remarkable is the non evidence of their relation. One
can also remark that none among TLSs is able to give any good prediction of the
true CTLS effect. It might be proposed to build a measure of the local nonlinearity
of a system by giving a “time of prediction” within some upper bound of the TLS
response.

Let now move to point B. Figure 15 shows some more TLS-functions along last
orbit before transition. Notice that the CTLS has been restarted at point B, so that
the change of sign of the zigzag preceding the transition has disappeared. TLS 1
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Fi1Gc. 15 — Across effect of TLS in approach to transition.

initiates a series of oscillations quite different than the one seen after point A. The
first response — magnified by a factor of 10 for clarity — is converging to a negative
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asymptote (0° — —0.8), at the origin of the across effect of the perturbation on the
system.
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F1G. 16 — More explicit across-effect toward transition (TLS).

It is clearly seen with figure 16 how this rotative effect starts and amplifies. This
effect is becoming divergent with TLSs 2 and 3, at beginning of transition. Then,
return to unstable oscillations (4, 5), finally becoming stable from point 6. TLS-(7)
response is also stable, whereas the last one shows a linear (scaled) instability. At
this point, the transition to the adverse wing of the attractor has ended.

How does the system recovers from transition ? This is seen on Fig. 17. The end of
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F1a. 17 — End of transition (TLS effect again).

transition is marked by TLS a of positive increase, that appears to be a characteristic
of transitions in this system. Two across diverging TLS-effects then appear (b and
c¢). Then the stationary tangent system responds with unstable oscillations (d and
e), with growing periods, to back up to damped oscillations on the first right-wing
orbit.
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Link with the three poles sequences.

As figure 18 shows, the 3RP sequences correspond to across periods of the
stationary feedback effect that becomes diverging. This suggest that the “rotating
repulsion” by each point of no-convection is accumulating its effect orbit after orbit
until transition. The last TLS (black curve) — just after the 3RP sequence — is
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F1a. 18 — TLS-effect going to transition.

unstably oscillating at the beginning of the positive bump of the CTLS-effect.
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TLS delay

is

10

A

A synthesis between SLTC versus TLS feedback effects.

Now, all TLS functions are systematically drawn along the four orbits
trajectory (Fig. 19). The scatter plot shows the stationary feedback effect with the
T axis going down from the current point of the non stationary response. Due to the
strong variation in amplitudes, the functions are scaled with a tanh function that
keeps linearity of the response between —1 and 41, and where +2 represents infinite
amplitudes. Thank to that scaling, one is able to follow the transformation of the
periods in the oscillating sequences in particular.

Each revolution around an orbit shows the same type of sequence : when
heading toward apogees, one meets exponentially growing amplitudes of oscillation
with decreasing period until becoming close to the one of a CTLS zigzag. The
oscillations then recover a relative stability when backing to perigees. Each new
orbit just shows an intensification of the preceding features until transition. Along

CTLS response (scaled)
x variable

/_\

wo

| timeg along
|

Fiac. 19 — CTLS- and et TLS-effects along four orbits going to transition.

the four revolutions, one can observe the 3RP sequence as the blue vertical band :
it corresponds with the along repulsive effect from central point that is found to
increase also each new orbit. The white vertical band at approximately ¢t = 3.4 is
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1LS delay

the unstable exponential sequence characteristic of transitions. On the right wing,
the tree real poles sequence is now reduced in duration but, as already noticed, is
announcing a transition soon happening (not shown).

A synthesis between SLTC-effect and TLS-feedback gain.

Figure 20 shows the same synthesis, but now with the stationary feedback gain
gs(7). The scaling is again in tanh, with linearity between —5 and 5, log-function
out of this interval, and infinite in +10. The absence of oscillation is remarkable :
in the open-loop mode, that is, when the ¢ = xy “model” is not responding to the
perturbed system, oscillations are suppressed. The only positive gain at ¢ ~ 3.4,

is
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F1G. 20 — CTLS effect compared to TLS feedback gain g,(7) along the four orbits
before transition.

is very short in duration at end of transition. One can notice how each rise toward
apogee shows a very repulsive along gain with growing duration along the four orbits,
whereas backing to perigee shows a decrease of it. Moderately negative sections of

the gain-function are responsible for oscillations if the feedback loop is closed :

IL =g+ ¢°>+ ¢> + ..., with powers understood as iterated convolution products.
-9
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CTLS for different test-variables

Figure 21 shows the CTLS feedback effect for test variable as copy of x and y,
and a third one is zz, in addition to the previous zy. Same normalization and two
first orbits. Copies are multiplied by 10. The same amplification of the zigzag is seen
on all responses, but on the zy only is seen a change of sign before transition. Even
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F1G. 21 — Comparison between four test-variables CTLS feedback effect function

in a low dimensional model as the present one, the feedback functions can respond
quite differently in spite of the simple feedback structure of the loop. But the heavy
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Fi1g. 22 — Comparison between long-term feedback effects for test-variables z and
xy.

features, as here (Fig.22) the long-term Lyapunov increase, look similar.

Variable z is analyzed by Edouard Lorenz as the one that allows to follow the
stability along trajectory and detect transitions. We compare that variable with the
¢ = xy one (Fig. 22). One can see how they are giving the same type of information,

this being understood looking at system (1), because z is exponentially converging
to instant values of xy — as it will be detailed in the next section.
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Essai of physical analysis of the feedback results

First consider transfer zy. A perturbation is applied to this interaction between
speed of flow (in terms of a stream function mode) and the temperature difference
between ascending and subsiding fluid particles. When positive, the perturbation
intensify z, the difference between upper and lower fluid temperatures. This
correspond to the speeding up of the flow that tends to depart low and up
temperatures from the mean — taken in the Rayleigh-Bénard theory as the constant
gradient line between limiting boundary conditions in temperature. As a result, the
heat flow between fluid and surfaces will increase, thus fighting against the horizontal
temperature difference y. That last parameter will thus decrease on the left wing
(where x is negative). Because that horizontal gradient is the engine of the rotating
of the fluid, the fluid vorticity will decrease. Finally, xy will decrease, hence the
linear stability observed in the short-term..

General synthesis of the analysis

One can justify after the present study a “feedback” view on the Lorenz system

based on three distances :

— as viewed from far enough, the attractor is playing its “attraction effect” by
decreasing the local Lyapunov exponent ;

— going closer looking at a leaf, the change of sign in the CTLS zigzag
announcing transition is linked with a repulsive effect from central point, after
an intensification of the rotational effect induced by no-convection points;

— getting closer again, each orbit shows a repulsive effect that cast the movement
toward apogees, then followed by the rotational effect from no-convection
points. It is only after numerous orbits are followed that the accumulation
of the double effect swings out the movement to the adverse leaf;

Knowing that the system is chaotic, it is not surprising that the CTLS function
exponentially grows. What might be more surprising is that the log-scaled function
looks quite independent of the starting point, and that the Lyapunov increase is
immediately seen. What is changing with the starting point is the time where the
zigzag is changing sign before a transition. This should be analyzed in more details.

Nevertheless, the interest of being able to analyze the CTLS feedback functions
looks quite obvious for more general systems too complex to be considered from
their equations. Also, when considering the numerous diverging log-scaled linear
feedback effect functions along the trajectory, the CTLS instability is keeping its
exponential increase, showing how the nonlinearities in the model are damping the
linear instability.

As a final remark, the linear increase of the dynamical features once log-scaled
suggests that an analysis of this system “a la Floquet” might be able to zoom on
the detailed dynamical features of the model.
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1.2 A numerical analysis of the open-loop system

Contrary to the preceding studies based on the tangent system analysis, we have
also run the model in the open-loop mode, that is freezing the test-variable ¢ at some
initial value, say d. In that case, the system linearizes quickly after z exponentially

converging to —. Hence, once z = ¢, the rest of the system is linear (see Eq. 1).

As Edward Lorenz explains in his 1963 paper, there are transition values of z that
we should verify numerically.

When starting from a point on the studied trajectories and a moderate value
¢ = 100, the open-loop trajectory (Fig. 23) is converging to the central point after
an incursion to the right leaf.

s phi=100

T T
‘res.data"ev4u23 +

H#*WWD

F1Gc. 23 — Lorenz model in open-loop

1 1 1 1
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x Courant-Lagrange

mode, ¢ frozen at 100.
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s phi=400

L T
‘res.data" ev 4 w2:3  +
+

1 1 1
-3 -2 -1
x Courant-Lagrange

Fi1G. 24 — Lorenz with ¢ frozen at 400.
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F1G. 25 — Lorenz with ¢ frozen at 40.
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The greater value of d = 400 leads to an increased rotating effect both within the
left wing and after transition to the right wing before converging to central point. For

17




S helad -1000 psit.ldata” ul2 I
"< head -1000 psit.data" u 1:7 -------
"< head -1000 psit.data” u 1:($17/20) -~

3 L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

Fi1g. 26 — SLTC for different test-variables :2=x,7=y,17=x2 with frozen ¢ = zy =
400.

a smaller value of ¢ = 40, Fig. 25 shows an exponential repulsion from central point,
with a slope of approximately 2, that makes the movement not passing through
the left no-convection point. This shows another transition between repulsive and
rotating effects,. This justifies how the CTLS reacts along the four orbits as we
interpreted it.

Coming back to the value of 400 that leads to a strong rotating effect, we now
look at the CTLS effect on two other test-variables, the one copying x and y, as well
as the xz one. Figure 26 shows indeed damped oscillations as soon as xy is frozen.
This is not in contradiction with the absence of oscillations in the feedback gain
response, because on the contrary, oscillations are seen until the system becomes
linear, whereas by construction the TLS functions are linear responses.
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1.3 Analysis of CTLS at fix points

Left point of no-convection (NC)

When system is positioned initially to the left point of no-convection (z =
—6V2,y =1x,2 = 27), it responds to a perturbation with a divergent oscillation that
corresponds to the instability on that point (Fig. 27) — with our set of parameters
values. Consider the trajectory of CTLS effects on =z and y as test-variables of
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Fic. 27 CTLS effect on va-
riable : 12=xy at left point of no-
convection.
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Fiac. 28 — SLTC :2=x versus 7=y at
left NC point.

Fig. 28. One can clearly observe that the NC point is causing a repulsive effect on
both variables together with a rotational effect.
The exponential growing of the radius is seen on figure 29 (log scaled), with

35 T

25 r

15

0.5

"<head -100000 psit.data” u 1:(0.540g($7+2+$2+°2)) —

15

time

20 25 30

Fia. 29 - SLTC :x versus y at left NC point, log-scaled radius.

the value of 0.95 of first Lyapunov exponent, which justify our conclusion about an

“orbital neutrality” along the Lyapunov.
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Central point

Let now move the initial point to central point (0,0). There is no more rotational
effect, replaced by a purely repulsive effect, passing far from the NC point (point C
on Fig. 30).
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Fiac. 30 - SLTC : x versus y at Central Point.
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Annex : Linking TLS and CTLS feedback functions

How does the stationary responses combine in the true CTLS one ? Let consider
a section of the trajectory from ¢ to t + 0t

py(t+3ts) = <cl(t+at) | / T Bt 4 61,7 | b(r) >dr

= (<cft+dt) [ — <) [+ <) )
_/ttm exp(A(t+ 6t — 7)) | b(t) >dr + /: Bt + 5t,7) | b(r) >d7]
= (<A@ d) |+ < @) ) (2)

A7HT — exp(Adt)) | b(t) > +(I + Adt) / t o(t, 1) | b(r) >d7]

The factor to < ¢f(t) | in the bracket is composed of a first term that represents
the stationary feedback effect function : p}(dt), and a second that, with the unit
matrix of the infinite series of exp(Adt), is the CTLS effect : p,(t, s). Hence, at first
order and at constant < ¢! |, the CTLS is built additively from the stationary effect
function, with an additional term in §t :

t
po(t+6t,5) 2 p(t,s) + p5(0t)+ < ¢ | Adt / O(t,7) | b(r) >dr (3)

This in particular is the full construction of the CTLS effect when the test variable
copies one of the state variables — < ¢! | is then the transpose of one from Euler
basis vectors of the state-space.

More generally, the non constant < ¢' | is responsible for the supplementary
contribution

—~
N

)

+ @ cAdnay | [Al(l — exp(Adt)) | b(t) > +(I + Adt + ...) /t O(t,7) | b(r) >dr

12

< Ac(t: df) | / "B(t,7) [ b(r) >dr

taking 0t such that < Acf(¢;dt) |~ dt.
Finally at first order :

py(t + 8t ) o pe(t, ) + p5 (6t)+ < ' (£) A(t)dt + Ac(¢; dt) | /tcb(t,r) | b(7) >dr
S (4)

In conclusion, and even when < ¢f | is constant, there is indeed an immediate
additive contribution of TLS to CTLS function, but it has to be completed by a
cumulative effect depending on the preceding trajectory. The relative importance
of the two contributions is depending on the system, and difficult to infer. Coming
back to our proposition to measure nonlinearity with the predictive ability of the
TLS, one could define the horizon §t such that the integral term in (3) is bounded.
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