
Feedbak gain funtions in the Lorenz-63 model
May 2007Complement to a Letter to Euro.Phys.Lett.(informal researh paper of the TEF-ZOOM ollaboration1)As a reminder of the famous \buttery e�et"2, that proves how Poetry, Art andSiene together might be the future of mankind...
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Fig. 1 { The Lorenz attrator.Referring to the Letter, the only transfer variable here is ' = xy. This test-variable orresponds to an interation between the ow intensity and a temperaturedi�erene between asending and desending uid partiles. The original Lorenzsystem is ast to its feedbak-form as follows8<: �tx = s(y � x)�ty = (rx� y � xz)�tz = �bz + xy Feedbak�! 8>><>>: �tx = s(y � x)�ty = (rx� y � xz)�tz = �bz + '' = xy (1)1by Al1 and StepH.2for non limatologist readers, the said \buttery e�et" does not refer to the double wing shapeof the Lorenz attrator, but to its haoti behavior. Is this at the origin of most people desribingthe attrator as buttery wings shaped ? 1



The \nonlinear" feedbak e�et of the system on ' is omputed with the Mini kerprogram (see manual in the web pages) using the extension Psi t,ko pert Type= 3 ativated, and of ourse is depending on the starting point.
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Fig. 2 { CTLS feedbak-e�et �(0; �).The log-saled funtion learly shows an average linear inrease following the�rst Lyapunov exponent (�L ' 0:95), as well as the ampli�ed zigzag preeding eahtransition (notie that the x axis has been rotated to follow the log-Lyapounovinrease of the feedbak funtion).In omparison, the TLS-gain is the stati funtion of the response-time to a step-perturbing funtion applied at a partiular point of the trajetory (Fig.3) :At every point of the trajetory an be de�ned an autonomous system and itsresponse to perturbation. When this onstant Jaobian matries system is integratedin open-loop mode, the feedbak-gain is obtained.In Mini ker, this funtion is automatially omputed using the spetraldeomposition desribed in the Letter.One an notie that the TLS-gain always has real poles only, in three di�erentshapes{ negative with �nite asymptote, see points 2, 6, 10 ;{ negative runaways, see points 12, 14, 16 then 20 ;{ the preeding one �nishing up a positive runaway sequene (18 and 19) ;we shall see that the short positive sequene is a harateristi of an end of transitionbetween the two wings of the attrator.Stationary feedbak-e�et.Contrary to the gain funtion, the feedbak-e�et shows osillating sequenes.This means that the hosen transfer variable is at the origin of the osillation of themodel, that disappears when the loop through this transfer is ut in the feedbakloop. 2
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Fig. 3 { SLT-gain gs(t; t+ �)
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Fig. 4 { TLS feedbak e�et �s(t; t+ �).We now fous on an orbit (point A) �rst, and seond when approahing, here adouble transition (point B) along the trajetory (Fig. 5). Notie that we are hereexploring a di�erent trajetory than in the Letter.On �gure 6, we start at point A and examine a sequene of seven TLS-e�etresponses ; the perturbing step has an amplitude of 10 for larity.The �rst response is a weakly damped osillation, followed in 2 by a largeamplitude and large period osillation ; the period goes next to its more urrent3
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Fig. 5 { Portion of the trajetory.value in 3, and goes bak to damped responses at the remaining points.
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Fig. 6 { Orbits and CTLS feedbak e�et.
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We an also look at the full sequene of the poles (�g. 7). What is shown are thefeedbak-e�et Laplae-transform omplex amplitudes, showing a systemati realpole and a omplex onjugate pair possibly degenerating in two real poles. Now the
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Fig. 7 { CTLS-e�et and the population of TLS poles.sequene along eah orbit is quite lear : eah orbit initiates an instable risis thatstarts with a three-real poles sequene (3RP), followed by a diverging osillationthat beomes �nally damped. The same full sequene is reprodued at eah neworbit, exept that the three-real poles sequene beomes longer, orresponding tothe inrease in amplitude of the CTLS-zigzag feedbak e�et.
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Fig. 8 { TLS feedbak e�et funtions �s(t; t+ �).Figure 8 illustrates the same TLS poles population when approahing the5



transition (point B). One an see how the osillating sequene is replaed by threeexponentials (one being unstable) ; then during the transition, the osillations areretrieved that seem to allow the system to reover a new orbiting sequene, but nowon the right wing.1 Another portion of the trajetory (same as inthe Letter)Figure 9 shows the same part of the trajetory as the one of the Letter, withfour orbits before transition. As already said in the Letter, the Lorenz system issymmetri aross z, so that the ' = xy variable is quite insensitive to the transition,whereas it is onspiuous in the CTLS feedbak funtion.
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Fig. 9 { Test variable trajetory in the Lorenz model and Feedbak E�et.Between points A and B, %(t; 0) shows osillations of inreasing amplitude,orresponding to the nonlinear instability of the system. The revolution around anorbit { one of the wings { involves \along" and \aross" feedbak e�ets in a zigzagshape. We all \along" a sequene when the feedbak response is positive, beausea positive perturbation in xy along an orbit an be onsidered as a fore drawingthe point toward or away from entral point (0,0). When positive, the response is,roughly speaking, aligned along the perturbation. Conversely, a negative feedbake�et means that the response is, roughly speaking again, perpendiular { \aross"{ to the perturbation, ausing a rotational e�et.The four orbits show that the system reats in the aross way when heading toapogees (away from 0; 0), and in the along way when baking toward perigees (loseto 0; 0).The more distintive feature is the hange in sign of the CTLS zigzag just beforetransition : the along ampli�ed reation is now leading, followed by a strong arosse�et near the apogee, �nally resulting in the leaving of the left wing for the other.Figure 10 illustrates the long-term e�et of the same funtion. For larity inthe olloation with transitions, the x variable is plot with a rotation to followthe Lyapunov inrease (x! x + �Lt). The linear logarithmi inrease is in average6
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Fig. 10 { Long term feedbak response (log sale) and x trajetory rotated alongthe Lyapunov exponent.following the Lyapunov exponent (�L ' 0:95). More surprising is the similar inreaseof the zigzag amplitude.The CTLS is learly deteting the transitions, not only with an sudden inreasein the zigzag amplitude, but also with a hange of sign of the leading bump, nowpositive (�g. 9). We veri�ed that among the di�erent terms of the RHS of the systemno other test variable is showing the same reverse in sign (see Fig.21).Analysis of a trajetory starting far from the attrator.

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

time

log abs(CTLS)
x (rotated)

Fig. 11 { Same as �g. 10 with initial onditions out of the attrator.Figure 11 is analog to Fig. 10 for di�erent initial onditions, hosen far fromthe attrator { in fat, lose to the point of no-onvetion of the left wing. It isnotieable that the CTLS-e�et shows a weak inrease when out of the attrator.That is observed eah time the point leaves the attrator, see times : 35; 48 et 73.Clearly, the attrator is exerting its e�et by \stabilizing" - that is, dereasing the7



exponential growing { when outside of it, ompared to the asymptoti behavior assoon as the urrent point lies in the attrator.These remarks are justifying the interest in the dynamis of the feedbakfuntions, with a detetion of transitions and a behavior depending on some\distane" to the attrator in the attrator basin. We will now onsider the samefuntions at a loser look at the system dynamis.A ZOOM on the orbits before a transitionLet now examine four orbits going to transition. On Fig. 12, the x; y trajetoryis plot with error-bars, haraterizing the CTLS feedbak e�et log-saled. Error-bars are the CTLS amplitude (log-saled), plot as vertial when above the meanLyapunov inrease (along e�et, horizontal when under (aross e�et). Both orbitsare followed lokwise.The �rst orbit shows the aross e�et only, when the point is orbiting aroundthe left-wing point of steady-onvetion (at enter of orbits). Between point 1 and2 on the fourth orbit, the point is deelerated toward perigee by the along reation,then aelerated when heading to the apogee. This suggest that the along e�et isaused by a repulsion from entral point.The transition is started by a strong aross reation after the apogee (5), andthe irulating point is again deelerated by repulsion from entral point, but withan o�set that kiks o� the point into the right wing. The end of the trajetory in the�gure shows a strong aross e�et orresponding indeed to a just following seondtransition (not shown).
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Fig. 12 { CTLS response before transition (saled, see text).Finally, the preeding analysis of the nonlinear feedbak features of the modelallow di�erent interpretation, from global to lose-up views, that in our belief totallyjustify the interest of omputing suh funtions when a dynamial interpretationof the behavior of a system is needed. Notie that the present analysis is notbased on physial interpretation of a feedbak-loop struture at all. Of ourse, when8



onerned with a physial proess, the preeding interpretation is enrihed withphysial mehanisms expressing their dynamis.1.1 Comparison with stationary feedbak e�etLet now illustrate the onnetions between stationary and non-stationaryfeedbak e�ets with two portions of the trajetory, looking at the omplexamplitudes of % funtions in the Laplae domain. The elements of the spetraldeomposition are double-salar produts < y j ei >< fi j b > in Eq. (9) of theLetter with ~u(�) = 1� .One a triplet of the model parameters is being given, one an imagine the state-spae as �lled with poles and assoiated omplex amplitudes of the TLS-feedbake�et { one an think of an analogy with Higgs bosons in the quanti vauum.The non-stationary response builds up grabbing these elements along the referene

-50

-40

-30

-20

-10

0

10

20

30

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time

A B

3 real poles 3 real poles 3 real poles 3 real poles

real
real

cmplx
CTLS response

real

A

B

-20 -15 -10 -5 0 5 10 15 20
Psi-Lagrange (x) -25

-20
-15

-10
-5

0
5

10
15

20
25

Temp mode 1 (y)

10

15

20

25

30

35

40

45

Temp mode 2 (z)

Fig. 13 { CTLS Feedbak e�et ompared to TLS struture amplitudes.trajetory. The way CTLS-funtions build up is not intuitive { see the annex {beause the state-transition matrix is an in�nite produt of elementary stationaryones.Along the �rst revolution in Fig. 13, the non-zero omplex amplitude isresponsible for the aross (or rotational) response of the CTLS-e�et. This is followedby pure real amplitudes with an inreasing trend. These are the \three real poles"sequenes marked on the �gure. The duration of that type of sequene regularlyinreases at eah new revolution, until the transition phase is reahed. After thetransition, the 3RP sequene shortens, but does not anel. In fat, the seond orbitin the right wing leads to a new transition.In the real spae { that is, after inversion of Eq.(9) in the Letter, the stationaryfeedbak funtion %s(�) an be displayed as funtion of the response time � , the pointof the trajetory being the starting point of the step-perturbation applied (� = 0).In Fig. 9, the CTLS-e�et is given one for all with a saling by exp(��Lt). EahTLS %s funtion is similarly saled by exp(��L�).
9
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Fig. 14 { Di�erent Feedbak responses along two orbits after point A.Figure 14 displays seven of those TLS-funtions along the two �rst orbits (pointA). The �rst shows an unstable osillation with a period omparable with the CTLSdouble bump osillation. Seond and third TLS-funtions are at beginning and end ofa damped osillation sequene with slowly inreasing period. At point 4, the periodis about four times greater than the shorter one, and ends with the at portionof the CTLS response. Around TLS 5, a short sequene of unstable osillation ispreeding the rise of the CTLS zigzag. With TLS-(6) and (7), damped osillationsare reovered, announing the following at setion of the CTLS.It is remarkable how the nonlinear e�ets of the model are \absorbing" theunstable TLS-e�ets, but also remarkable is the non evidene of their relation. Onean also remark that none among TLSs is able to give any good predition of thetrue CTLS e�et. It might be proposed to build a measure of the loal nonlinearityof a system by giving a \time of predition" within some upper bound of the TLSresponse.Let now move to point B. Figure 15 shows some more TLS-funtions along lastorbit before transition. Notie that the CTLS has been restarted at point B, so thatthe hange of sign of the zigzag preeding the transition has disappeared. TLS 1
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Fig. 15 { Aross e�et of TLS in approah to transition.initiates a series of osillations quite di�erent than the one seen after point A. The�rst response { magni�ed by a fator of 10 for larity { is onverging to a negative10



asymptote (%s ! �0:8), at the origin of the aross e�et of the perturbation on thesystem.
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Fig. 16 { More expliit aross-e�et toward transition (TLS).It is learly seen with �gure 16 how this rotative e�et starts and ampli�es. Thise�et is beoming divergent with TLSs 2 and 3, at beginning of transition. Then,return to unstable osillations (4, 5), �nally beoming stable from point 6. TLS-(7)response is also stable, whereas the last one shows a linear (saled) instability. Atthis point, the transition to the adverse wing of the attrator has ended.How does the system reovers from transition ? This is seen on Fig. 17. The end of
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Fig. 17 { End of transition (TLS e�et again).transition is marked by TLS a of positive inrease, that appears to be a harateristiof transitions in this system. Two aross diverging TLS-e�ets then appear (b and). Then the stationary tangent system responds with unstable osillations (d ande), with growing periods, to bak up to damped osillations on the �rst right-wingorbit. 11



Link with the three poles sequenes.As �gure 18 shows, the 3RP sequenes orrespond to aross periods of thestationary feedbak e�et that beomes diverging. This suggest that the \rotatingrepulsion" by eah point of no-onvetion is aumulating its e�et orbit after orbituntil transition. The last TLS (blak urve) { just after the 3RP sequene { is
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Fig. 18 { TLS-e�et going to transition.unstably osillating at the beginning of the positive bump of the CTLS-e�et.
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A synthesis between SLTC versus TLS feedbak e�ets.Now, all TLS funtions are systematially drawn along the four orbitstrajetory (Fig. 19). The satter plot shows the stationary feedbak e�et with the� axis going down from the urrent point of the non stationary response. Due to thestrong variation in amplitudes, the funtions are saled with a tanh funtion thatkeeps linearity of the response between �1 and +1, and where �2 represents in�niteamplitudes. Thank to that saling, one is able to follow the transformation of theperiods in the osillating sequenes in partiular.Eah revolution around an orbit shows the same type of sequene : whenheading toward apogees, one meets exponentially growing amplitudes of osillationwith dereasing period until beoming lose to the one of a CTLS zigzag. Theosillations then reover a relative stability when baking to perigees. Eah neworbit just shows an intensi�ation of the preeding features until transition. Along
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Fig. 19 { CTLS- and et TLS-e�ets along four orbits going to transition.the four revolutions, one an observe the 3RP sequene as the blue vertial band :it orresponds with the along repulsive e�et from entral point that is found toinrease also eah new orbit. The white vertial band at approximately t = 3:4 is13



the unstable exponential sequene harateristi of transitions. On the right wing,the tree real poles sequene is now redued in duration but, as already notied, isannouning a transition soon happening (not shown).A synthesis between SLTC-e�et and TLS-feedbak gain.Figure 20 shows the same synthesis, but now with the stationary feedbak gaings(�). The saling is again in tanh, with linearity between �5 and 5, log-funtionout of this interval, and in�nite in �10. The absene of osillation is remarkable :in the open-loop mode, that is, when the ' = xy \model" is not responding to theperturbed system, osillations are suppressed. The only positive gain at t ' 3:4,
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Fig. 20 { CTLS e�et ompared to TLS feedbak gain gs(�) along the four orbitsbefore transition.is very short in duration at end of transition. One an notie how eah rise towardapogee shows a very repulsive along gain with growing duration along the four orbits,whereas baking to perigee shows a derease of it. Moderately negative setions ofthe gain-funtion are responsible for osillations if the feedbak loop is losed :g1� g = g + g2 + g3 + :::, with powers understood as iterated onvolution produts.14



CTLS for di�erent test-variablesFigure 21 shows the CTLS feedbak e�et for test variable as opy of x and y,and a third one is xz, in addition to the previous xy. Same normalization and two�rst orbits. Copies are multiplied by 10. The same ampli�ation of the zigzag is seenon all responses, but on the xy only is seen a hange of sign before transition. Even
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Fig. 21 { Comparison between four test-variables CTLS feedbak e�et funtion.in a low dimensional model as the present one, the feedbak funtions an respondquite di�erently in spite of the simple feedbak struture of the loop. But the heavy
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Fig. 22 { Comparison between long-term feedbak e�ets for test-variables z andxy.features, as here (Fig.22) the long-term Lyapunov inrease, look similar.Variable z is analyzed by Edouard Lorenz as the one that allows to follow thestability along trajetory and detet transitions. We ompare that variable with the' = xy one (Fig. 22). One an see how they are giving the same type of information,this being understood looking at system (1), beause z is exponentially onvergingto instant values of xy { as it will be detailed in the next setion.15



Essai of physial analysis of the feedbak resultsFirst onsider transfer xy. A perturbation is applied to this interation betweenspeed of ow (in terms of a stream funtion mode) and the temperature di�erenebetween asending and subsiding uid partiles. When positive, the perturbationintensify z, the di�erene between upper and lower uid temperatures. Thisorrespond to the speeding up of the ow that tends to depart low and uptemperatures from the mean { taken in the Rayleigh-B�enard theory as the onstantgradient line between limiting boundary onditions in temperature. As a result, theheat ow between uid and surfaes will inrease, thus �ghting against the horizontaltemperature di�erene y. That last parameter will thus derease on the left wing(where x is negative). Beause that horizontal gradient is the engine of the rotatingof the uid, the uid vortiity will derease. Finally, xy will derease, hene thelinear stability observed in the short-term..General synthesis of the analysisOne an justify after the present study a \feedbak" view on the Lorenz systembased on three distanes :{ as viewed from far enough, the attrator is playing its \attration e�et" bydereasing the loal Lyapunov exponent ;{ going loser looking at a leaf, the hange of sign in the CTLS zigzagannouning transition is linked with a repulsive e�et from entral point, afteran intensi�ation of the rotational e�et indued by no-onvetion points ;{ getting loser again, eah orbit shows a repulsive e�et that ast the movementtoward apogees, then followed by the rotational e�et from no-onvetionpoints. It is only after numerous orbits are followed that the aumulationof the double e�et swings out the movement to the adverse leaf ;Knowing that the system is haoti, it is not surprising that the CTLS funtionexponentially grows. What might be more surprising is that the log-saled funtionlooks quite independent of the starting point, and that the Lyapunov inrease isimmediately seen. What is hanging with the starting point is the time where thezigzag is hanging sign before a transition. This should be analyzed in more details.Nevertheless, the interest of being able to analyze the CTLS feedbak funtionslooks quite obvious for more general systems too omplex to be onsidered fromtheir equations. Also, when onsidering the numerous diverging log-saled linearfeedbak e�et funtions along the trajetory, the CTLS instability is keeping itsexponential inrease, showing how the nonlinearities in the model are damping thelinear instability.As a �nal remark, the linear inrease of the dynamial features one log-saledsuggests that an analysis of this system \a la Floquet" might be able to zoom onthe detailed dynamial features of the model.
16



1.2 A numerial analysis of the open-loop systemContrary to the preeding studies based on the tangent system analysis, we havealso run the model in the open-loop mode, that is freezing the test-variable ' at someinitial value, say d. In that ase, the system linearizes quikly after z exponentiallyonverging to db . Hene, one z = ste, the rest of the system is linear (see Eq. 1).As Edward Lorenz explains in his 1963 paper, there are transition values of z thatwe should verify numerially.When starting from a point on the studied trajetories and a moderate value' = 100, the open-loop trajetory (Fig. 23) is onverging to the entral point afteran inursion to the right leaf.
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Fig. 23 { Lorenz model in open-loopmode, ' frozen at 100. -8
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Fig. 24 { Lorenz with ' frozen at 400.
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Fig. 25 { Lorenz with ' frozen at 40.The greater value of d = 400 leads to an inreased rotating e�et both within theleft wing and after transition to the right wing before onverging to entral point. For17
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Fig. 26 { SLTC for di�erent test-variables :2=x,7=y,17=xz with frozen ' = xy =400.a smaller value of ' = 40, Fig. 25 shows an exponential repulsion from entral point,with a slope of approximately 2, that makes the movement not passing throughthe left no-onvetion point. This shows another transition between repulsive androtating e�ets,. This justi�es how the CTLS reats along the four orbits as weinterpreted it.Coming bak to the value of 400 that leads to a strong rotating e�et, we nowlook at the CTLS e�et on two other test-variables, the one opying x and y, as wellas the xz one. Figure 26 shows indeed damped osillations as soon as xy is frozen.This is not in ontradition with the absene of osillations in the feedbak gainresponse, beause on the ontrary, osillations are seen until the system beomeslinear, whereas by onstrution the TLS funtions are linear responses.
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1.3 Analysis of CTLS at �x pointsLeft point of no-onvetion (NC)When system is positioned initially to the left point of no-onvetion (x =�6p2; y = x; z = 27), it responds to a perturbation with a divergent osillation thatorresponds to the instability on that point (Fig. 27) { with our set of parametersvalues. Consider the trajetory of CTLS e�ets on x and y as test-variables of
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Fig. 27 { CTLS e�et on va-riable : 12=xy at left point of no-onvetion. -15
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Fig. 28 { SLTC :2=x versus 7=y atleft NC point.Fig. 28. One an learly observe that the NC point is ausing a repulsive e�et onboth variables together with a rotational e�et.The exponential growing of the radius is seen on �gure 29 (log saled), with
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Fig. 29 { SLTC :x versus y at left NC point, log-saled radius.the value of 0.95 of �rst Lyapunov exponent, whih justify our onlusion about an\orbital neutrality" along the Lyapunov.19



Central pointLet now move the initial point to entral point (0,0). There is no more rotationale�et, replaed by a purely repulsive e�et, passing far from the NC point (point Con Fig. 30).
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Fig. 30 { SLTC : x versus y at Central Point.
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Annex : Linking TLS and CTLS feedbak funtionsHow does the stationary responses ombine in the true CTLS one ? Let onsidera setion of the trajetory from t to t+ Æt�g(t+ Æt; s) = < y(t+ Æt) j Z t+Æts �(t + Æt; �) j b(�) >d�= (< y(t+ Æt) j � < y(t) j + < y(t) j)�Z t+Ætt exp(A(t+ Æt� �)) j b(t) >d� + Z ts �(t + Æt; �) j b(�) >d��= (< �y(t; dt) j + < y(t) j) (2)�A�1(I � exp(AÆt)) j b(t) > +(I + AÆt) Z ts �(t; �) j b(�) >d��The fator to < y(t) j in the braket is omposed of a �rst term that representsthe stationary feedbak e�et funtion : �sg(Æt), and a seond that, with the unitmatrix of the in�nite series of exp(AÆt), is the CTLS e�et : �g(t; s). Hene, at �rstorder and at onstant < y j, the CTLS is built additively from the stationary e�etfuntion, with an additional term in Æt :�g(t+ Æt; s) (1)' �g(t; s) + �sg(Æt)+ < y j AÆt Z ts �(t; �) j b(�) >d� (3)This in partiular is the full onstrution of the CTLS e�et when the test variableopies one of the state variables { < y j is then the transpose of one from Eulerbasis vetors of the state-spae.More generally, the non onstant < y j is responsible for the supplementaryontribution+ (2)= < �y(t; dt) j �A�1(I � exp(AÆt)) j b(t) > +(I + AÆt+ :::) Z ts �(t; �) j b(�) >d��' < �y(t; dt) j Z ts �(t; �) j b(�) >d� ;taking Æt suh that < �y(t; dt) j� Æt.Finally at �rst order :�g(t + Æt; s) (1)' �g(t; s) + �sg(Æt)+ < y(t)A(t)Æt +�y(t; dt) j Z ts �(t; �) j b(�) >d�(4)In onlusion, and even when < y j is onstant, there is indeed an immediateadditive ontribution of TLS to CTLS funtion, but it has to be ompleted by aumulative e�et depending on the preeding trajetory. The relative importaneof the two ontributions is depending on the system, and diÆult to infer. Comingbak to our proposition to measure nonlinearity with the preditive ability of theTLS, one ould de�ne the horizon Æt suh that the integral term in (3) is bounded.
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