
Feedba
k gain fun
tions in the Lorenz-63 model
May 2007Complement to a Letter to Euro.Phys.Lett.(informal resear
h paper of the TEF-ZOOM 
ollaboration1)As a reminder of the famous \butter
y e�e
t"2, that proves how Poetry, Art andS
ien
e together might be the future of mankind...
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Fig. 1 { The Lorenz attra
tor.Referring to the Letter, the only transfer variable here is ' = xy. This test-variable 
orresponds to an intera
tion between the 
ow intensity and a temperaturedi�eren
e between as
ending and des
ending 
uid parti
les. The original Lorenzsystem is 
ast to its feedba
k-form as follows8<: �tx = s(y � x)�ty = (rx� y � xz)�tz = �bz + xy Feedba
k�! 8>><>>: �tx = s(y � x)�ty = (rx� y � xz)�tz = �bz + '' = xy (1)1by Al1 and StepH.2for non 
limatologist readers, the said \butter
y e�e
t" does not refer to the double wing shapeof the Lorenz attra
tor, but to its 
haoti
 behavior. Is this at the origin of most people des
ribingthe attra
tor as butter
y wings shaped ? 1



The \nonlinear" feedba
k e�e
t of the system on ' is 
omputed with the Mini kerprogram (see manual in the web pages) using the extension Psi t,ko pert Type= 3 a
tivated, and of 
ourse is depending on the starting point.
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Fig. 2 { CTLS feedba
k-e�e
t �(0; �).The log-s
aled fun
tion 
learly shows an average linear in
rease following the�rst Lyapunov exponent (�L ' 0:95), as well as the ampli�ed zigzag pre
eding ea
htransition (noti
e that the x axis has been rotated to follow the log-Lyapounovin
rease of the feedba
k fun
tion).In 
omparison, the TLS-gain is the stati
 fun
tion of the response-time to a step-perturbing fun
tion applied at a parti
ular point of the traje
tory (Fig.3) :At every point of the traje
tory 
an be de�ned an autonomous system and itsresponse to perturbation. When this 
onstant Ja
obian matri
es system is integratedin open-loop mode, the feedba
k-gain is obtained.In Mini ker, this fun
tion is automati
ally 
omputed using the spe
tralde
omposition des
ribed in the Letter.One 
an noti
e that the TLS-gain always has real poles only, in three di�erentshapes{ negative with �nite asymptote, see points 2, 6, 10 ;{ negative runaways, see points 12, 14, 16 then 20 ;{ the pre
eding one �nishing up a positive runaway sequen
e (18 and 19) ;we shall see that the short positive sequen
e is a 
hara
teristi
 of an end of transitionbetween the two wings of the attra
tor.Stationary feedba
k-e�e
t.Contrary to the gain fun
tion, the feedba
k-e�e
t shows os
illating sequen
es.This means that the 
hosen transfer variable is at the origin of the os
illation of themodel, that disappears when the loop through this transfer is 
ut in the feedba
kloop. 2
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Fig. 3 { SLT-gain gs(t; t+ �)
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Fig. 4 { TLS feedba
k e�e
t �s(t; t+ �).We now fo
us on an orbit (point A) �rst, and se
ond when approa
hing, here adouble transition (point B) along the traje
tory (Fig. 5). Noti
e that we are hereexploring a di�erent traje
tory than in the Letter.On �gure 6, we start at point A and examine a sequen
e of seven TLS-e�e
tresponses ; the perturbing step has an amplitude of 10 for 
larity.The �rst response is a weakly damped os
illation, followed in 2 by a largeamplitude and large period os
illation ; the period goes next to its more 
urrent3
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Fig. 5 { Portion of the traje
tory.value in 3, and goes ba
k to damped responses at the remaining points.
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Fig. 6 { Orbits and CTLS feedba
k e�e
t.
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We 
an also look at the full sequen
e of the poles (�g. 7). What is shown are thefeedba
k-e�e
t Lapla
e-transform 
omplex amplitudes, showing a systemati
 realpole and a 
omplex 
onjugate pair possibly degenerating in two real poles. Now the
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Fig. 7 { CTLS-e�e
t and the population of TLS poles.sequen
e along ea
h orbit is quite 
lear : ea
h orbit initiates an instable 
risis thatstarts with a three-real poles sequen
e (3RP), followed by a diverging os
illationthat be
omes �nally damped. The same full sequen
e is reprodu
ed at ea
h neworbit, ex
ept that the three-real poles sequen
e be
omes longer, 
orresponding tothe in
rease in amplitude of the CTLS-zigzag feedba
k e�e
t.
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Fig. 8 { TLS feedba
k e�e
t fun
tions �s(t; t+ �).Figure 8 illustrates the same TLS poles population when approa
hing the5



transition (point B). One 
an see how the os
illating sequen
e is repla
ed by threeexponentials (one being unstable) ; then during the transition, the os
illations areretrieved that seem to allow the system to re
over a new orbiting sequen
e, but nowon the right wing.1 Another portion of the traje
tory (same as inthe Letter)Figure 9 shows the same part of the traje
tory as the one of the Letter, withfour orbits before transition. As already said in the Letter, the Lorenz system issymmetri
 a
ross z, so that the ' = xy variable is quite insensitive to the transition,whereas it is 
onspi
uous in the CTLS feedba
k fun
tion.
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Fig. 9 { Test variable traje
tory in the Lorenz model and Feedba
k E�e
t.Between points A and B, %(t; 0) shows os
illations of in
reasing amplitude,
orresponding to the nonlinear instability of the system. The revolution around anorbit { one of the wings { involves \along" and \a
ross" feedba
k e�e
ts in a zigzagshape. We 
all \along" a sequen
e when the feedba
k response is positive, be
ausea positive perturbation in xy along an orbit 
an be 
onsidered as a for
e drawingthe point toward or away from 
entral point (0,0). When positive, the response is,roughly speaking, aligned along the perturbation. Conversely, a negative feedba
ke�e
t means that the response is, roughly speaking again, perpendi
ular { \a
ross"{ to the perturbation, 
ausing a rotational e�e
t.The four orbits show that the system rea
ts in the a
ross way when heading toapogees (away from 0; 0), and in the along way when ba
king toward perigees (
loseto 0; 0).The more distin
tive feature is the 
hange in sign of the CTLS zigzag just beforetransition : the along ampli�ed rea
tion is now leading, followed by a strong a
rosse�e
t near the apogee, �nally resulting in the leaving of the left wing for the other.Figure 10 illustrates the long-term e�e
t of the same fun
tion. For 
larity inthe 
ollo
ation with transitions, the x variable is plot with a rotation to followthe Lyapunov in
rease (x! x + �Lt). The linear logarithmi
 in
rease is in average6
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Fig. 10 { Long term feedba
k response (log s
ale) and x traje
tory rotated alongthe Lyapunov exponent.following the Lyapunov exponent (�L ' 0:95). More surprising is the similar in
reaseof the zigzag amplitude.The CTLS is 
learly dete
ting the transitions, not only with an sudden in
reasein the zigzag amplitude, but also with a 
hange of sign of the leading bump, nowpositive (�g. 9). We veri�ed that among the di�erent terms of the RHS of the systemno other test variable is showing the same reverse in sign (see Fig.21).Analysis of a traje
tory starting far from the attra
tor.
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Fig. 11 { Same as �g. 10 with initial 
onditions out of the attra
tor.Figure 11 is analog to Fig. 10 for di�erent initial 
onditions, 
hosen far fromthe attra
tor { in fa
t, 
lose to the point of no-
onve
tion of the left wing. It isnoti
eable that the CTLS-e�e
t shows a weak in
rease when out of the attra
tor.That is observed ea
h time the point leaves the attra
tor, see times : 35; 48 et 73.Clearly, the attra
tor is exerting its e�e
t by \stabilizing" - that is, de
reasing the7



exponential growing { when outside of it, 
ompared to the asymptoti
 behavior assoon as the 
urrent point lies in the attra
tor.These remarks are justifying the interest in the dynami
s of the feedba
kfun
tions, with a dete
tion of transitions and a behavior depending on some\distan
e" to the attra
tor in the attra
tor basin. We will now 
onsider the samefun
tions at a 
loser look at the system dynami
s.A ZOOM on the orbits before a transitionLet now examine four orbits going to transition. On Fig. 12, the x; y traje
toryis plot with error-bars, 
hara
terizing the CTLS feedba
k e�e
t log-s
aled. Error-bars are the CTLS amplitude (log-s
aled), plot as verti
al when above the meanLyapunov in
rease (along e�e
t, horizontal when under (a
ross e�e
t). Both orbitsare followed 
lo
kwise.The �rst orbit shows the a
ross e�e
t only, when the point is orbiting aroundthe left-wing point of steady-
onve
tion (at 
enter of orbits). Between point 1 and2 on the fourth orbit, the point is de
elerated toward perigee by the along rea
tion,then a

elerated when heading to the apogee. This suggest that the along e�e
t is
aused by a repulsion from 
entral point.The transition is started by a strong a
ross rea
tion after the apogee (5), andthe 
ir
ulating point is again de
elerated by repulsion from 
entral point, but withan o�set that ki
ks o� the point into the right wing. The end of the traje
tory in the�gure shows a strong a
ross e�e
t 
orresponding indeed to a just following se
ondtransition (not shown).
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Fig. 12 { CTLS response before transition (s
aled, see text).Finally, the pre
eding analysis of the nonlinear feedba
k features of the modelallow di�erent interpretation, from global to 
lose-up views, that in our belief totallyjustify the interest of 
omputing su
h fun
tions when a dynami
al interpretationof the behavior of a system is needed. Noti
e that the present analysis is notbased on physi
al interpretation of a feedba
k-loop stru
ture at all. Of 
ourse, when8




on
erned with a physi
al pro
ess, the pre
eding interpretation is enri
hed withphysi
al me
hanisms expressing their dynami
s.1.1 Comparison with stationary feedba
k e�e
tLet now illustrate the 
onne
tions between stationary and non-stationaryfeedba
k e�e
ts with two portions of the traje
tory, looking at the 
omplexamplitudes of % fun
tions in the Lapla
e domain. The elements of the spe
tralde
omposition are double-s
alar produ
ts < 
y j ei >< fi j b > in Eq. (9) of theLetter with ~u(�) = 1� .On
e a triplet of the model parameters is being given, one 
an imagine the state-spa
e as �lled with poles and asso
iated 
omplex amplitudes of the TLS-feedba
ke�e
t { one 
an think of an analogy with Higgs bosons in the quanti
 va
uum.The non-stationary response builds up grabbing these elements along the referen
e
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Fig. 13 { CTLS Feedba
k e�e
t 
ompared to TLS stru
ture amplitudes.traje
tory. The way CTLS-fun
tions build up is not intuitive { see the annex {be
ause the state-transition matrix is an in�nite produ
t of elementary stationaryones.Along the �rst revolution in Fig. 13, the non-zero 
omplex amplitude isresponsible for the a
ross (or rotational) response of the CTLS-e�e
t. This is followedby pure real amplitudes with an in
reasing trend. These are the \three real poles"sequen
es marked on the �gure. The duration of that type of sequen
e regularlyin
reases at ea
h new revolution, until the transition phase is rea
hed. After thetransition, the 3RP sequen
e shortens, but does not 
an
el. In fa
t, the se
ond orbitin the right wing leads to a new transition.In the real spa
e { that is, after inversion of Eq.(9) in the Letter, the stationaryfeedba
k fun
tion %s(�) 
an be displayed as fun
tion of the response time � , the pointof the traje
tory being the starting point of the step-perturbation applied (� = 0).In Fig. 9, the CTLS-e�e
t is given on
e for all with a s
aling by exp(��Lt). Ea
hTLS %s fun
tion is similarly s
aled by exp(��L�).
9
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Fig. 14 { Di�erent Feedba
k responses along two orbits after point A.Figure 14 displays seven of those TLS-fun
tions along the two �rst orbits (pointA). The �rst shows an unstable os
illation with a period 
omparable with the CTLSdouble bump os
illation. Se
ond and third TLS-fun
tions are at beginning and end ofa damped os
illation sequen
e with slowly in
reasing period. At point 4, the periodis about four times greater than the shorter one, and ends with the 
at portionof the CTLS response. Around TLS 5, a short sequen
e of unstable os
illation ispre
eding the rise of the CTLS zigzag. With TLS-(6) and (7), damped os
illationsare re
overed, announ
ing the following 
at se
tion of the CTLS.It is remarkable how the nonlinear e�e
ts of the model are \absorbing" theunstable TLS-e�e
ts, but also remarkable is the non eviden
e of their relation. One
an also remark that none among TLSs is able to give any good predi
tion of thetrue CTLS e�e
t. It might be proposed to build a measure of the lo
al nonlinearityof a system by giving a \time of predi
tion" within some upper bound of the TLSresponse.Let now move to point B. Figure 15 shows some more TLS-fun
tions along lastorbit before transition. Noti
e that the CTLS has been restarted at point B, so thatthe 
hange of sign of the zigzag pre
eding the transition has disappeared. TLS 1
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Fig. 15 { A
ross e�e
t of TLS in approa
h to transition.initiates a series of os
illations quite di�erent than the one seen after point A. The�rst response { magni�ed by a fa
tor of 10 for 
larity { is 
onverging to a negative10



asymptote (%s ! �0:8), at the origin of the a
ross e�e
t of the perturbation on thesystem.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6

"../gsrun/vpfrun.data" u 1:7
"../gsrun/vpfrun.data" u 1:12
"../gsrun/vpfrun.data" u 1:14
"../gsrun/vpfrun.data" u 1:16
"../gsrun/vpfrun.data" u 1:18

B 7

18

TLS 5

TLS 8

-20
-15

-10
-5

0
5

10
15

Psi-Lagrange (x) -25
-20

-15
-10

-5
0

5
10

15
20

Temp. mode 1 (y)

10

15

20

25

30

35

40

45

Temp. mode 2 (z)

Fig. 16 { More expli
it a
ross-e�e
t toward transition (TLS).It is 
learly seen with �gure 16 how this rotative e�e
t starts and ampli�es. Thise�e
t is be
oming divergent with TLSs 2 and 3, at beginning of transition. Then,return to unstable os
illations (4, 5), �nally be
oming stable from point 6. TLS-(7)response is also stable, whereas the last one shows a linear (s
aled) instability. Atthis point, the transition to the adverse wing of the attra
tor has ended.How does the system re
overs from transition ? This is seen on Fig. 17. The end of
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Fig. 17 { End of transition (TLS e�e
t again).transition is marked by TLS a of positive in
rease, that appears to be a 
hara
teristi
of transitions in this system. Two a
ross diverging TLS-e�e
ts then appear (b and
). Then the stationary tangent system responds with unstable os
illations (d ande), with growing periods, to ba
k up to damped os
illations on the �rst right-wingorbit. 11



Link with the three poles sequen
es.As �gure 18 shows, the 3RP sequen
es 
orrespond to a
ross periods of thestationary feedba
k e�e
t that be
omes diverging. This suggest that the \rotatingrepulsion" by ea
h point of no-
onve
tion is a

umulating its e�e
t orbit after orbituntil transition. The last TLS (bla
k 
urve) { just after the 3RP sequen
e { is
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Fig. 18 { TLS-e�e
t going to transition.unstably os
illating at the beginning of the positive bump of the CTLS-e�e
t.

12



A synthesis between SLTC versus TLS feedba
k e�e
ts.Now, all TLS fun
tions are systemati
ally drawn along the four orbitstraje
tory (Fig. 19). The s
atter plot shows the stationary feedba
k e�e
t with the� axis going down from the 
urrent point of the non stationary response. Due to thestrong variation in amplitudes, the fun
tions are s
aled with a tanh fun
tion thatkeeps linearity of the response between �1 and +1, and where �2 represents in�niteamplitudes. Thank to that s
aling, one is able to follow the transformation of theperiods in the os
illating sequen
es in parti
ular.Ea
h revolution around an orbit shows the same type of sequen
e : whenheading toward apogees, one meets exponentially growing amplitudes of os
illationwith de
reasing period until be
oming 
lose to the one of a CTLS zigzag. Theos
illations then re
over a relative stability when ba
king to perigees. Ea
h neworbit just shows an intensi�
ation of the pre
eding features until transition. Along
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Fig. 19 { CTLS- and et TLS-e�e
ts along four orbits going to transition.the four revolutions, one 
an observe the 3RP sequen
e as the blue verti
al band :it 
orresponds with the along repulsive e�e
t from 
entral point that is found toin
rease also ea
h new orbit. The white verti
al band at approximately t = 3:4 is13



the unstable exponential sequen
e 
hara
teristi
 of transitions. On the right wing,the tree real poles sequen
e is now redu
ed in duration but, as already noti
ed, isannoun
ing a transition soon happening (not shown).A synthesis between SLTC-e�e
t and TLS-feedba
k gain.Figure 20 shows the same synthesis, but now with the stationary feedba
k gaings(�). The s
aling is again in tanh, with linearity between �5 and 5, log-fun
tionout of this interval, and in�nite in �10. The absen
e of os
illation is remarkable :in the open-loop mode, that is, when the ' = xy \model" is not responding to theperturbed system, os
illations are suppressed. The only positive gain at t ' 3:4,
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Fig. 20 { CTLS e�e
t 
ompared to TLS feedba
k gain gs(�) along the four orbitsbefore transition.is very short in duration at end of transition. One 
an noti
e how ea
h rise towardapogee shows a very repulsive along gain with growing duration along the four orbits,whereas ba
king to perigee shows a de
rease of it. Moderately negative se
tions ofthe gain-fun
tion are responsible for os
illations if the feedba
k loop is 
losed :g1� g = g + g2 + g3 + :::, with powers understood as iterated 
onvolution produ
ts.14



CTLS for di�erent test-variablesFigure 21 shows the CTLS feedba
k e�e
t for test variable as 
opy of x and y,and a third one is xz, in addition to the previous xy. Same normalization and two�rst orbits. Copies are multiplied by 10. The same ampli�
ation of the zigzag is seenon all responses, but on the xy only is seen a 
hange of sign before transition. Even
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Fig. 21 { Comparison between four test-variables CTLS feedba
k e�e
t fun
tion.in a low dimensional model as the present one, the feedba
k fun
tions 
an respondquite di�erently in spite of the simple feedba
k stru
ture of the loop. But the heavy
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Fig. 22 { Comparison between long-term feedba
k e�e
ts for test-variables z andxy.features, as here (Fig.22) the long-term Lyapunov in
rease, look similar.Variable z is analyzed by Edouard Lorenz as the one that allows to follow thestability along traje
tory and dete
t transitions. We 
ompare that variable with the' = xy one (Fig. 22). One 
an see how they are giving the same type of information,this being understood looking at system (1), be
ause z is exponentially 
onvergingto instant values of xy { as it will be detailed in the next se
tion.15



Essai of physi
al analysis of the feedba
k resultsFirst 
onsider transfer xy. A perturbation is applied to this intera
tion betweenspeed of 
ow (in terms of a stream fun
tion mode) and the temperature di�eren
ebetween as
ending and subsiding 
uid parti
les. When positive, the perturbationintensify z, the di�eren
e between upper and lower 
uid temperatures. This
orrespond to the speeding up of the 
ow that tends to depart low and uptemperatures from the mean { taken in the Rayleigh-B�enard theory as the 
onstantgradient line between limiting boundary 
onditions in temperature. As a result, theheat 
ow between 
uid and surfa
es will in
rease, thus �ghting against the horizontaltemperature di�eren
e y. That last parameter will thus de
rease on the left wing(where x is negative). Be
ause that horizontal gradient is the engine of the rotatingof the 
uid, the 
uid vorti
ity will de
rease. Finally, xy will de
rease, hen
e thelinear stability observed in the short-term..General synthesis of the analysisOne 
an justify after the present study a \feedba
k" view on the Lorenz systembased on three distan
es :{ as viewed from far enough, the attra
tor is playing its \attra
tion e�e
t" byde
reasing the lo
al Lyapunov exponent ;{ going 
loser looking at a leaf, the 
hange of sign in the CTLS zigzagannoun
ing transition is linked with a repulsive e�e
t from 
entral point, afteran intensi�
ation of the rotational e�e
t indu
ed by no-
onve
tion points ;{ getting 
loser again, ea
h orbit shows a repulsive e�e
t that 
ast the movementtoward apogees, then followed by the rotational e�e
t from no-
onve
tionpoints. It is only after numerous orbits are followed that the a

umulationof the double e�e
t swings out the movement to the adverse leaf ;Knowing that the system is 
haoti
, it is not surprising that the CTLS fun
tionexponentially grows. What might be more surprising is that the log-s
aled fun
tionlooks quite independent of the starting point, and that the Lyapunov in
rease isimmediately seen. What is 
hanging with the starting point is the time where thezigzag is 
hanging sign before a transition. This should be analyzed in more details.Nevertheless, the interest of being able to analyze the CTLS feedba
k fun
tionslooks quite obvious for more general systems too 
omplex to be 
onsidered fromtheir equations. Also, when 
onsidering the numerous diverging log-s
aled linearfeedba
k e�e
t fun
tions along the traje
tory, the CTLS instability is keeping itsexponential in
rease, showing how the nonlinearities in the model are damping thelinear instability.As a �nal remark, the linear in
rease of the dynami
al features on
e log-s
aledsuggests that an analysis of this system \a la Floquet" might be able to zoom onthe detailed dynami
al features of the model.
16



1.2 A numeri
al analysis of the open-loop systemContrary to the pre
eding studies based on the tangent system analysis, we havealso run the model in the open-loop mode, that is freezing the test-variable ' at someinitial value, say d. In that 
ase, the system linearizes qui
kly after z exponentially
onverging to db . Hen
e, on
e z = 

ste, the rest of the system is linear (see Eq. 1).As Edward Lorenz explains in his 1963 paper, there are transition values of z thatwe should verify numeri
ally.When starting from a point on the studied traje
tories and a moderate value' = 100, the open-loop traje
tory (Fig. 23) is 
onverging to the 
entral point afteran in
ursion to the right leaf.
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Fig. 23 { Lorenz model in open-loopmode, ' frozen at 100. -8
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Fig. 24 { Lorenz with ' frozen at 400.
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Fig. 25 { Lorenz with ' frozen at 40.The greater value of d = 400 leads to an in
reased rotating e�e
t both within theleft wing and after transition to the right wing before 
onverging to 
entral point. For17
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Fig. 26 { SLTC for di�erent test-variables :2=x,7=y,17=xz with frozen ' = xy =400.a smaller value of ' = 40, Fig. 25 shows an exponential repulsion from 
entral point,with a slope of approximately 2, that makes the movement not passing throughthe left no-
onve
tion point. This shows another transition between repulsive androtating e�e
ts,. This justi�es how the CTLS rea
ts along the four orbits as weinterpreted it.Coming ba
k to the value of 400 that leads to a strong rotating e�e
t, we nowlook at the CTLS e�e
t on two other test-variables, the one 
opying x and y, as wellas the xz one. Figure 26 shows indeed damped os
illations as soon as xy is frozen.This is not in 
ontradi
tion with the absen
e of os
illations in the feedba
k gainresponse, be
ause on the 
ontrary, os
illations are seen until the system be
omeslinear, whereas by 
onstru
tion the TLS fun
tions are linear responses.
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1.3 Analysis of CTLS at �x pointsLeft point of no-
onve
tion (NC)When system is positioned initially to the left point of no-
onve
tion (x =�6p2; y = x; z = 27), it responds to a perturbation with a divergent os
illation that
orresponds to the instability on that point (Fig. 27) { with our set of parametersvalues. Consider the traje
tory of CTLS e�e
ts on x and y as test-variables of
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Fig. 27 { CTLS e�e
t on va-riable : 12=xy at left point of no-
onve
tion. -15
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Fig. 28 { SLTC :2=x versus 7=y atleft NC point.Fig. 28. One 
an 
learly observe that the NC point is 
ausing a repulsive e�e
t onboth variables together with a rotational e�e
t.The exponential growing of the radius is seen on �gure 29 (log s
aled), with
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Fig. 29 { SLTC :x versus y at left NC point, log-s
aled radius.the value of 0.95 of �rst Lyapunov exponent, whi
h justify our 
on
lusion about an\orbital neutrality" along the Lyapunov.19



Central pointLet now move the initial point to 
entral point (0,0). There is no more rotationale�e
t, repla
ed by a purely repulsive e�e
t, passing far from the NC point (point Con Fig. 30).
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Fig. 30 { SLTC : x versus y at Central Point.
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Annex : Linking TLS and CTLS feedba
k fun
tionsHow does the stationary responses 
ombine in the true CTLS one ? Let 
onsidera se
tion of the traje
tory from t to t+ Æt�g(t+ Æt; s) = < 
y(t+ Æt) j Z t+Æts �(t + Æt; �) j b(�) >d�= (< 
y(t+ Æt) j � < 
y(t) j + < 
y(t) j)�Z t+Ætt exp(A(t+ Æt� �)) j b(t) >d� + Z ts �(t + Æt; �) j b(�) >d��= (< �
y(t; dt) j + < 
y(t) j) (2)�A�1(I � exp(AÆt)) j b(t) > +(I + AÆt) Z ts �(t; �) j b(�) >d��The fa
tor to < 
y(t) j in the bra
ket is 
omposed of a �rst term that representsthe stationary feedba
k e�e
t fun
tion : �sg(Æt), and a se
ond that, with the unitmatrix of the in�nite series of exp(AÆt), is the CTLS e�e
t : �g(t; s). Hen
e, at �rstorder and at 
onstant < 
y j, the CTLS is built additively from the stationary e�e
tfun
tion, with an additional term in Æt :�g(t+ Æt; s) (1)' �g(t; s) + �sg(Æt)+ < 
y j AÆt Z ts �(t; �) j b(�) >d� (3)This in parti
ular is the full 
onstru
tion of the CTLS e�e
t when the test variable
opies one of the state variables { < 
y j is then the transpose of one from Eulerbasis ve
tors of the state-spa
e.More generally, the non 
onstant < 
y j is responsible for the supplementary
ontribution+ (2)= < �
y(t; dt) j �A�1(I � exp(AÆt)) j b(t) > +(I + AÆt+ :::) Z ts �(t; �) j b(�) >d��' < �
y(t; dt) j Z ts �(t; �) j b(�) >d� ;taking Æt su
h that < �
y(t; dt) j� Æt.Finally at �rst order :�g(t + Æt; s) (1)' �g(t; s) + �sg(Æt)+ < 
y(t)A(t)Æt +�
y(t; dt) j Z ts �(t; �) j b(�) >d�(4)In 
on
lusion, and even when < 
y j is 
onstant, there is indeed an immediateadditive 
ontribution of TLS to CTLS fun
tion, but it has to be 
ompleted by a
umulative e�e
t depending on the pre
eding traje
tory. The relative importan
eof the two 
ontributions is depending on the system, and diÆ
ult to infer. Comingba
k to our proposition to measure nonlinearity with the predi
tive ability of theTLS, one 
ould de�ne the horizon Æt su
h that the integral term in (3) is bounded.
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