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Abstract

Many global climate models underestimate the cloud cover and overestimate the cloud albedo, especially for low-level clouds.

We determine how a correct representation of the vertical structure of clouds can fix part of this bias. We use the 1D McICA

framework and focus on low-level clouds. Using LES results as reference, we propose a method based on exponential-random

overlap (ERO) that represents the cloud overlap between layers and the subgrid cloud properties over several vertical scales, with

a single value of the overlap parameter. Starting from a coarse vertical grid, representative of atmospheric models, this algorithm

is used to generate the vertical profile of the cloud fraction with a finer vertical resolution, or to generate it on the coarse grid

but with subgrid heterogeneity and cloud overlap that ensures a correct cloud cover. Doing so we find decorrelation lengths are

dependent on the vertical resolution, except if the vertical subgrid heterogeneity and interlayer overlap are taken into account

coherently. We confirm that the frequently used maximum-random overlap leads to a significant error by underestimating the

low-level cloud cover with a relative error of about 50%, that can lead to an error of SW cloud albedo as big as 70%. Not taking

into account the subgrid vertical heterogeneity of clouds can cause an additional relative error of 20% in brightness, assuming

the cloud cover is correct.
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Key Points:6

• We extend the use of exponential-random overlap to represent both overlap and7
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Abstract13

Many global climate models underestimate the cloud cover and overestimate the cloud14

albedo, especially for low-level clouds. We determine how a correct representation of the15

vertical structure of clouds can fix part of this bias. We use the 1D McICA framework16

and focus on low-level clouds. Using LES results as reference, we propose a method based17

on exponential-random overlap (ERO) that represents the cloud overlap between lay-18

ers and the subgrid cloud properties over several vertical scales, with a single value of19

the overlap parameter. Starting from a coarse vertical grid, representative of atmospheric20

models, this algorithm is used to generate the vertical profile of the cloud fraction with21

a finer vertical resolution, or to generate it on the coarse grid but with subgrid hetero-22

geneity and cloud overlap that ensures a correct cloud cover. Doing so we find decorre-23

lation lengths are dependent on the vertical resolution, except if the vertical subgrid het-24

erogeneity and interlayer overlap are taken into account coherently. We confirm that the25

frequently used maximum-random overlap leads to a significant error by underestimat-26

ing the low-level cloud cover with a relative error of about 50%, that can lead to an er-27

ror of SW cloud albedo as big as 70%. Not taking into account the subgrid vertical het-28

erogeneity of clouds can cause an additional relative error of 20% in brightness, assum-29

ing the cloud cover is correct.30

Plain Language Summary31

Low-level clouds are the main source of spread in model estimates of climate sen-32

sitivity, but climate models resolutions do not allow them to explicitly resolve the ge-33

ometrical complexity of low-level clouds, which must be parametrized. Most climate mod-34

els low-level clouds have a cloud cover too small and a cloud albedo too high, which is35

known as the “too few too bright bias”. In this work we determine whether a better rep-36

resentation of the vertical structure of clouds can fix part of this bias. We use high-resolution37

simulations as references and radiative transfer algorithms to assess the performances38

of our cloud generation, in the framework of commonly used overlap assumptions. When39

the cloud cover of the scene is known, we show that the exponential-random overlap al-40

lows a good representation of the vertical structure of clouds and of the cloud albedo.41

We find the decorrelation lengths used to model the overlap are highly dependent on the42

model vertical resolution, and present a way to overcome this dependency when both sub-43

grid scale and interlayer overlap are taken into account consistently. We present values44

that can be used to compute accurately the cloud cover and the cloud albedo of the stud-45

ied scenes.46
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1 Introduction47

The size and the spatial structure of clouds vary by several orders of magnitude48

(Koren et al. (2008)). The size of the horizontal meshes of global and regional atmospheric49

circulation models typically range from a few kilometers to a few hundred kilometers,50

and their vertical resolution in the troposphere is typically from ten to several hundred51

meters. Thus the geometric representation of clouds in these models at scales smaller52

than those of the mesh sizes must be parametrized, especially to compute the radiative53

effect of clouds that is of crucial importance for the climate.54

The cloud geometry in a model is generally simply described by a horizontal frac-55

tion of the layer being cloudy, the remaining part being clear. In the cloudy part, the56

in-cloud liquid or solid amount of water is often assumed to be uniform, although some57

improved representations have been proposed (Räisänen et al. (2004); Hogan and Shonk58

(2013)). The cloud cover and the mean optical depth of the cloudy region are inter-dependent59

when the profile of cloud fractions and water contents are known. They depend on how60

the cloud fractions overlap on the vertical: if they overlap maximally, the cloud cover61

will be minimum and the mean optical depth maximum, and if they overlap randomly,62

the cloud cover will be larger and the mean optical depth smaller.63

How the cloud fraction (CF ) of each atmospheric layer overlap with other layers64

has been widely studied (Geleyn and Hollingsworth (1979); Barker et al. (1999); Jakob65

and Klein (1999)). Many recent studies use an exponential-random scheme approach where66

the probability of two layers overlapping decreases exponentially with the distance be-67

tween them (Hogan and Illingworth (2000); Bergman and Rasch (2002); Tompkins and68

Di Giuseppe (2007); Shonk and Hogan (2010)). The corresponding decorrelation length69

scale has been estimated from satellite radar observations (Jing et al. (2016)), in-situ ob-70

servations (Mace and Benson-Troth (2002)), and high resolution model simulations (Neggers71

et al. (2011)). Studies have shown that the decorrelation length can be parametrized as72

a function of the horizontal wind profile of the column (Pincus et al. (2005); Di Giuseppe73

and Tompkins (2015); Sulak et al. (2020)).74

The vertical subgrid heterogeneity of the cloud fraction has been less investigated.75

Atmospheric model cloud schemes calculate the cloud fraction as the volume of the grid76

box that contains clouds, CFv, but radiation is primarily sensitive to the surface cloud77

fraction CFs which is the relative surfacic fraction covered by clouds in a cell. Often im-78

plicitly, these two fractions are assumed to be equal, i.e. the clouds are assumed to be79

homogeneous on the vertical in each cell. This can seem logical on the first order given80

the area/depth ratio of the grid cells, however, recent studies show that this may intro-81

duce significant biases, as the distribution of cloud water can be vertically heterogeneous82

in layers as thin as 100 m (Brooks et al. (2005); Jouhaud et al. (2018)), and that CFs83

is typically greater than CFv by about 30% (Neggers et al. (2011)). A direct consequence84

of not taking into account this difference is that, for a given cloud faction in volume, the85

surface fraction of the clouds is too small and the water content per unit of cloud frac-86

tion (and therefore the cloud albedo) too large.87

Considering these results, we address the following questions: can we use exponential-88

random overlap to statistically represent the vertical structure of cloud scenes, only us-89

ing a small number of aggregated quantities, to simulate precisely radiative fluxes ? How90

does this representation depend on the vertical resolution ? What is the radiative error91

that is induced when the subgrid vertical structure of the clouds is not explicitely resolved92

and hence not seen by radiation ? To answer them we propose an overlap model that93

ensures consistency between the overlap between cloudy layers and the representation94

of subgrid heterogeneity. Indeed, we contend that both are intended to represent the same95

characteristic of clouds, their vertical distribution, and that the distinction between the96

two depends on the vertical resolution of the atmospheric model, which can vary. Like97

done in the McICA method, we neglect the 3D effects and keep the classical plane par-98
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allel assumption (each vertical profile represents a stack of horizontally infinite and ho-99

mogeneous slabs) in our 1D approach. Assuming that the volumic cloud fraction and wa-100

ter content are known on a coarse vertical grid consisting in a single column, typical of101

an atmospheric model, we developed an algorithm to generate an ensemble of subcolumns102

to statistically represent the heterogeneity of clouds.103

The manuscript is organised as follows: in Section 2, we consider the exponential-104

random overlap (ERO) as a Markov process and show its ability to represent the ver-105

tical distribution of the cloud fraction over a wide range of scales that includes both the106

subgrid scale and the overlap between layers. In Section 3 we study cloud scenes with107

known cloud covers, and compute the overlap parameters and decorrelation lengths that108

should be used with ERO on finer grids to reproduce those cloud covers, and doing so109

we assess the radiative impact of ERO on the SW cloud alebdo of the generated subcolumns.110

We also study the effects of different simplifying assumptions. Section 4 focuses on re-111

producing those results directly on the coarse grid, taking into account both the inter-112

layer overlap and the subgrid scale, assuming again that the cloud cover is known. The113

implication for cloud parameterization in atmospheric models and for how to estimate114

the decorrelation lengths are presented in Section 5.115

2 Statistical representation of the cloud fraction vertical distribution116

The model explored here is the so-called exponential-random overlap (ERO) model117

of Hogan and Illingworth (2000). We will only look at single-layer cumulus cloud fields118

so the “random” part of the model, which concerns cloudy layers that are separated by119

clear layers, will not be studied. The “exponential” part of the model states that the com-120

bined cloud fraction of two adjacent cloudy layers of surfacic fractions CF1 and CF2 is:121

CF1,2 = αCF1,2,max + (1− α)CF1,2,rand

where CF1,2,max is the combined surfacic cloud fraction of the two layers in case122

they overlap maximally:123

CF1,2,max = max(CF1, CF2)

and CF1,2,rand is the combined surfacic cloud fraction of the two layers in case they124

overlap randomly:125

CF1,2,rand = CF1 + CF2 − CF1CF2

In this model, “exponential” refers to the fact that α can be parametrized with an126

exponential function (see further). This model has been used in two different manners127

in radiative transfer parameterizations: either in a deterministic way, to compute the over-128

lap matrix that is used to distribute downwelling and upwelling fluxes from clear and129

cloudy regions of a layer into clear and cloudy regions of an adjacent layer ( TripleClouds,130

Shonk and Hogan (2008)), or in a probabilistic manner, to generate a sample of verti-131

cal profiles that preserve, when averaged, the principal characteristics of the cloud scene132

(the cloud fraction and the liquid water content in each layer), and upon which radia-133

tive transfer is simulated under the plane-parallel homogeneous assumption ( McICA,134

Pincus et al. (2003)). In this paper, the McICA framework is used to generate samples135

of vertical profiles. The main difference is that in the usual McICA algorithm, the pro-136

files are generated on the vertical grid of the host model, while here we aim at generat-137

ing profiles at any vertical resolution, including finer vertical resolutions.138
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Unless otherwise stated, in all this article, we consider a single vertical atmospheric139

column that consists of a cloudy block (with a strictly positive liquid water content at140

every level) of N vertical layers. From this column we assume the volume cloud fraction141

of each layer, (CFk)k=1...N , is known. We consider the exponential-random overlap model142

(ERO) as a Markovian process and deduce the relationship between the overlap param-143

eter α and the total cloud cover CC. We then use the same result to deal with subgrid144

vertical heterogeneity.145

2.1 ERO as a Markovian process: a sequence of conditional probabil-146

ities147

Using a certain overlap scheme in an atmospheric column to generate a cloud frac-148

tion distribution from top to bottom can be interpreted as a Markovian process as it is149

a sequence of overlapping or non-overlapping events. It is then possible to compute its150

outcome as a sequence of conditional probabilities, as done by Bergman and Rasch (2002).151

In a single atmospheric column of N vertical layers, let us consider a 1D subcol-152

umn. We want to articulate how the overlap used for the whole atmospheric column trans-153

lates to a subcolumn. If ~C = (Ck)k=1...N is the random variable representing the cloud154

fraction distribution of the subcolumn, with Ck ∈ {0, 1} (whether the cell is cloudy or155

not), and k is the vertical index,with k = 1 at the top of the column, the probability156

of a certain state ~C = (ck)k=1...N ∈ [0, 1]N is given by:157

P (~C) =

N∏
k=1

P (Ck = ck | Ck−1 = ck−1) (1)

where C0 = 0 (i.e. there is no cloud above the cloud block considered here). We158

use the classic upper case notation Ck for the random variables and the lower case no-159

tation ck for their realizations.160

For any level k in the subcolumn, the probability to have ck = 1 is the cloud frac-161

tion of the level, meaning P (Ck = 1) = CFk. We’ll call P (Ck = ck | Ck−1 = ck−1) a162

transition probability, it is the probability that in a subcolumn, layer k is in the state ck,163

knowing the layer k−1 is in the state ck−1. Since ck is either 0 or 1, there are only four164

possible types of transition between two levels, and being able to compute their prob-165

abilities at every level gives the probability of any vertical cloud fraction distribution for166

the column. Moreover, for each level k, two out of the four transition probabilities are167

dependant, as a layer is either cloudy or clear sky:168

{
P (Ck = 0 | Ck−1 = 1) = 1− P (Ck = 1 | Ck−1 = 1)

P (Ck = 1 | Ck−1 = 0) = 1− P (Ck = 0 | Ck−1 = 0)
(2)

Therefore, it is enough to know for instance the two transition probabilities P (Ck =169

1|Ck−1 = 1) and P (Ck = 0|Ck−1 = 0) for each level k to compute the probability of170

any given state of overlap for the column, using Eq.(1).171

The transition probability P (Ck = 1 | Ck−1 = 1) is the probability that both172

levels of the subcolumn are cloudy, knowing that the level k−1 is already cloudy. By173

definition, we have:174

P (Ck = 1 | Ck−1 = 1) =
P (Ck = 1 ∩ Ck−1 = 1)

P (Ck−1 = 1)
(3)

where (Ck = 1 ∩ Ck−1 = 1) is the event with both layers cloudy. If we assume175

an exponential-random overlap we have :176
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P (Ck = 1 | Ck−1 = 1) = αPmax(Ck = 1 | Ck−1 = 1) + (1− α)Prand(Ck = 1 | Ck−1 = 1)
(4)

where Pmax and Prand are the corresponding transition probabilities, in a subcol-177

umn, of maximum overlap and random overlap between two consecutive layers of the at-178

mospheric column. By definition of random overlap the probability of being cloudy at179

level k is independent of the conditions at level k − 1:180

Prand(Ck = 1 | Ck−1 = 1) = Prand(Ck = 1 | Ck−1 = 0) = Prand(Ck = 1) = CFk (5)

The transition probability in a subcolumn of the maximum overlap can be obtained181

using Eq. (3): if CFk−1 < CFk : Pmax(Ck = 1 | Ck−1 = 1) = 1, and on the con-182

trary if CFk−1 ≥ CFk: Pmax(Ck = 1 | Ck−1 = 1) = CFk
CFk−1

183

As a result,184

Pmax(Ck = 1 | Ck−1 = 1) =
min(CFk−1, CFk)

CFk−1
(6)

and (4) becomes :185

P (Ck = 1 | Ck−1 = 1) = α
min(CFk−1, CFk)

CFk−1
+ (1− α)CFk (7)

Let us compute Pmax(Ck = 0 | Ck−1 = 0) in the same way, and we get :186

Pmax(Ck = 0 | Ck−1 = 0) =
1−max(CFk−1, CFk)

1− CFk−1

and therefore:187

P (Ck = 0 | Ck−1 = 0) = α× (1−max(CFk−1, CFk))

1− CFk−1
+ (1− α)(1− CFk) (8)

These equations and exponential-random overlap more generally are applicable only188

for non overcast cloudy layers (i.e. CF ∈]0, 1[). Having computed the transition prob-189

abilities between different cloud states of the cells, we can now use them to generate sub-190

columns. The details of the implementation are presented in Appendix A, along with191

the main difference with the work of Räisänen et al. (2004), from which our algorithm192

is very much inspired. Thanks to Eqs. (7), (8) and (2) we can now compute the differ-193

ent transition probabilities for each layer k, knowing α. Then using Eq. (1) we can com-194

pute the probability to generate any vertical cloud fraction distribution for a subcolumn,195

for any exponential-random overlap parameter α ∈ [0, 1].196

2.2 The relationship between the overlap parameter α and the total cloud197

cover198

In a similar fashion as the work done by Barker (2008a, 2008b), we are now going199

to establish the relationship between the overlap parameter α and the total cloud cover200

CC, assuming ERO.201

–6–
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To obtain the formal expression of the total cloud cover from the previous equa-202

tions, it is easier to compute the probability of having no cloud for a whole subcolumn.203

Indeed P∅ corresponds to transition probabilities ’clear-sky/clear-sky’ of the form P (0|0).204

The probability to generate a fully clear-sky subcolumn can be seen as a first order Markov205

chain probability and therefore computed as the product of conditional probabilities, as206

seen in the previous section:207

P∅ =

N∏
k=1

P (Ck = 0 | Ck−1 = 0) (9)

Using Eq. (8) we get:208

P∅(α, (CF )1...N ) =

N∏
k=1

[α ∗(1−max(CFk−1, CFk)

)
1− CFk−1

+ (1− α)(1− CFk)

]
(10)

Given this equation, if we know the overlap parameter α, the total cloud cover is:209

CCERO = 1− P∅(α, (CF )1...N ) (11)

On the other hand if the total cloud cover CC is known, we can then determine210

the overlap parameter α that matches the total cloud cover CC :211

α = f−1∅ (1− CC) (12)

where212

f∅ : α ∈ [0, 1]→ f∅(α) = P∅(α, (CF )1...N )

For a given (CF )1...N profile (with CFk ∈]0, 1[ for each layer) and knowing CC,213

the function f∅ is strictly increasing, so f−1∅ exists. We compute α with a dichotomy method214

using a tolerance ε = 10−5.215

Eq. (12) gives the expression of α for a given cloud cover CC and cloud fraction216

profile (CF ). Eq. (10) allows us to compute CC if we know the overlap parameter α and217

the profile (CF ). Therefore for any given profile (CF ) and given the ERO model, it is218

equivalent to know CC or α (or the decorrelation length, see further).219

2.3 Vertical Subgriding220

We are now going to use the same method but to define how to generate a sam-221

ple of subcolumns with a higher vertical resolution starting from an atmospheric column222

with a coarse vertical resolution. We start from such a single column of N coarse lay-223

ers from which we know the vertical volume cloud fraction distribution {ĈFk}k=1...N ,224

and we generate subcolumns with n times more vertical levels, N = (N × n). We in-225

troduce the hypothesis that at every coarse level of the atmospheric column, the volume226

cloud fraction is the same for all the n sublayers :227

∀ l ∈ Lnk , CFl = ĈFk

–7–
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where Lnk is the ensemble of n sublayers within the coarse layer k.228

We then compute, like done previously, the probability P∅ to generate a clear-sky229

subcolumn. As the cloud fraction in a single coarse cell is uniform, the intralayer tran-230

sition probability P (Cl = 0|Cl−1 = 0) (Eq. (8)) between layers inside the same coarse231

cell simplifies as :232

P (Cl = 0|Cl−1 = 0) = Pintra,l = α+ (1− α)(1− CFl) (13)

For two adjacent cells that belong to two adjacent coarse layers, CFk and CFk−1233

can be different and the interlayer overlap transition probability, P (Ck = 0|Ck−1 =234

0) = Pinter,k is given by Eq. (8). Finally, P∅ is given by:235

P∅(α,N, n,CF ) =

N∏
k=1

[
Pinter,k

n−1∏
1

Pintra,k

]

=

N∏
k=1

[[
α+ (1− α)(1− ĈF k)

]n−1]

×

[α ∗(1−max(ĈF k−1, ĈF k)

)
1− ĈF k−1

+ (1− α)(1− ĈF k)

]
(14)

Like done previously, we can compute the cloud cover generated by a given over-236

lap parameter α, or if the total cloud cover of the scene is known, we can inverse this237

equation using Eq. (12) to compute the overlap parameter α that generates the same238

cloud cover. The next section shows the results of this subgriding: both its impacts on239

the cloud fraction profiles and the radiative properties of the ERO samples.240

3 Evaluating α and the cloud generation241

As done in many previous works such as Larson et al. (2002); R. A. J. Neggers et242

al. (2003); Neggers et al. (2011), we are using Large Eddy Simulations (LES) as refer-243

ence cases to assess our ERO algorithm. To test the algorithm presented in the previ-244

ous section, different shallow cumulus cloud cases have been used. We mostly studied245

the ARMCu cloud case (Brown et al. (2002)) showing the development of shallow cu-246

mulus convection over land, as well as two marine, trade-winds cumulus cloud cases BOMEX247

(Siebesma et al. (2003)) and RICO (vanZanten et al. (2011)), and another case of con-248

tinental cumulus SCMS (Neggers et al. (2003b)). For each case we use the correspond-249

ing LES results obtained with the atmospheric non-hydrostatic model MESO-NH (Lafore250

et al. (1998); Lac et al. (2018)), and all these simulations represent a 6.4 km× 6.4 km×251

4 km domain with a dx=dy=dz=25 m resolution. For each LES simulation we coarsen252

it into a single atmospheric column with the same vertical resolution dz, or a lower ver-253

tical resolution Dz, as shown in Fig. 1. For each of these single columns we know, by254

means of the LES, the total cloud cover CC, as well as the cloud fraction and the liq-255

uid water content at each vertical level. Doing so we go from a highly detailed 3D sim-256

ulation to a single column, and we lose the horizontal cloud structure. Using this sin-257

gle column we then sample subcolumns with the ERO algorithm presented in the pre-258

vious section. Finally, we assess this generation by comparing the statistical properties259

and solar albedo of the subcolumns with those of the LES.260

–8–
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Figure 1. Method used to develop and assess our cloudy columns sampling. The LES cloud

field of resolution dx=dy=dz=25 m is horizontally averaged into a single column and eventually

averaged vertically to a coarse resolution Dz>dz. We then sample Ns subcolumns with a vertical

resolution dz using the ERO algorithm, and then assess the process by comparing the sample’s

cloud fraction profile and TOA SW cloud albedo to the ones of the original LES.

3.1 Testing ERO and subgriding assuming the overlap parameter has261

a vertically constant value262

To assess the ERO generation process we first test the assumption that it is suf-263

ficient to use a single overlap parameter α for the whole cloud scene. We use an atmo-264

spheric column with a coarser vertical grid than the LES (Dz=100 m for the coarse res-265

olution, dz=25 m for the LES), and then use subgriding with the method presented in266

Section 2.3 to generate a sample of Ns subcolumns with a higher vertical resolution. The267

overlap parameter α used to generate this sample is computed with Eqs. (12,14) to en-268

sure the same cloud cover as the original scene (a similar approach is taken by Barker269

(2008a, 2008b)). Here and for the rest of the study, Ns ≈ 6.5 × 104 subcolumns have270

been generated. For this number, the total cloud cover of the LES is reproduced with271

a standard deviation 2.10−3, and it has been verified that the standard deviation is de-272

creasing like 1/
√
Ns, where Ns is the number of subcolumns generated, as predicted by273

the central limit theorem. As a first test, we assess how the cloud fraction seen from above274

or from below at altitude z varies as a function of this altitude (Fig. 2).275

The blue line (Fig. 2, middle and right panels) is the cloud cover profile of the orig-276

inal LES, with a total cloud cover of 0.2325. The grey line is obtained using a maximum277

overlap assumption, and shows a total cloud cover of only ∼ 10%. Since the scene con-278

sists of a single cloud block, this corresponds to models using the classical maximum-279

random overlap and assuming the cloud fraction is vertically uniform within each coarse280

layer. The orange line is computed with ERO to match the total cloud cover of the LES281

(α = 0.921), with a very close total cloud cover of 0.231 for that sample. The two plots282

on the right show that the ERO sampled subcolumns not only have the same total cloud283

cover than the LES, but also a close projected cloud cover at each vertical level. The abrupt284

changes in the cloud cover of the sampled subcolumns are a consequence of the hyopthe-285
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sis of a constant volume cloud fraction CFv in each coarse cell. For the generation with-286

out vertical subgriding of the previous section (Dz=dz=25 m), the vertical distribution287

of the cloud cover is almost indiscernible to that of the LES (not shown).288

Figure 2. Vertical distribution of the volume cloud fraction (left), of the total cloud cover

above (middle) and below (right) altitude z. The former is the projected total cloud cover of all

the clouds between the top of the domain and altitude z, the latter is the projected cloud cover

between the bottom of the domain and altitude z. On the middle and right panels are compared

the profiles from the LES (blue) and those obtained with two overlap models : maximum overlap

(grey) and ERO (orange). The red dot line shows the total cloud cover CC of the scene. Both

samples were made using the same initial single column with a vertical resolution Dz=100 m

and have the same final vertical resolution dz=25 m than the LES. The data presented is the

ARMCu cloud case (time step h=10).

Figure 3. The cloudy subcolumns of the LES scene (left) are sorted along the number of

cloudy cells in each subcolumns (dashed red). On the right the cloudy subcolumns out of a

Ns≈6.5×104 sample of subcolumns generated with ERO sorted in the same way (solid red for

the number of cloudy cells of the ERO profile). The number of cloudy cells of the LES has been

reproduced in dashed to compare it better with that of the ERO generation. The field used is the

10th hour of the ARMCu case.
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To go further, Fig. 3 shows the cloudy subcolumns of the same scene (cloudy cells289

in blue) sorted along the number of cloudy cells in each subcolumn (red). The left panel290

shows the cloudy subcolumns of the original LES, and the right panel shows the same291

plot for the sample of subcolumns generated by ERO. The vertical distribution of cloudy292

cells are very close, it shows the ERO generation not only reproduces the total cloud cover293

of the original scene, but also the distribution of cumulative cloud fraction.294

We then assess the radiative characteristics of the sample by comparing the short-295

wave (SW) radiative properties of the LES and that of the ERO sample. We compute296

the mean albedo of the cloudy subcolumns (i.e we do not consider any clear sky subcolumns)297

for different cloud scenes using a path-tracing Monte Carlo code from Villefranque et al.298

(2019). It tracks photon paths throughout a virtual atmosphere, explicitly simulating299

the radiative processes such as scattering, absorption, and surface albedo. When a pho-300

ton hits the top of the atmosphere (TOA), the algorithm adds its weight to a TOA counter301

(for reflection toward space), to a ground counter when it touches the ground (for ground302

absorption, here we put the ground albedo at zero), or to an atmospheric counter when303

it is absorbed (by liquid water or a gas). As the generated sample has no horizontal struc-304

ture, we use the Independant Column Approximation -or ICA - (Pincus et al. (2003)).305

Fig. 4 shows the cloud albedo of different sampling hypotheses, of the original LES scenes,306

as well as the total albedo of the scenes, and their total cloud cover. For each value of307

the coarse resolution Dz, a new overlap parameter has been computed : the different ERO308

scenes hence have the same total cloud covers.309

The maximum overlap assumption (grey) shows a much higher cloud albedo since310

it produces cloud scenes with less total cloud cover and hence brighter clouds. Using ERO311

produces a much closer cloud albedo, and the coarse resolution of the initial atmospheric312

single column has little impact : the relative difference with the cloud albedo of the ho-313

mogeneous LES starting with a 25 m vertical resolution is ∼ 1.5% and only of ∼ 2.5%314

when starting with a 200 m vertical resolution, for the simulation hours [6, 12].315
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Figure 4. Cloud albedo (top panel), total albedo (middle panel) and total cloud cover (lower

panel) for the LES (in red), for ERO with different coarse resolutions Dz and for maximum over-

lap with the coarse resolution Dz=100 m (in grey). The albedo of each scene is computed using

a Monte-Carlo algorithm under the Indenpendant Column Approximation, for the ARMCu cloud

case scenes (time steps h∈[4, 13]). The surface albedo is set at zero, Dz is the vertical resolution

of the coarse atmospheric single column and dz that of the reconstructed sample. In all scenes

the in-cloud LWC is homogeneous at each vertical level. For each computation, 106 realisations

were made, with a Monte-Carlo standard deviation of the cloud albedo of 10−6.
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3.2 Analysis of the overlap parameter α316

In Section 2 we established the relationship between the overlap parameter α and317

the total cloud cover CC and used it in 3.1 to determine α from the total cloud cover318

CC diagnosed from LES results. In this section we analyze the overlap parameters com-319

puted this way and compare them to the values given by other methods. For two dif-320

ferent cloudy atmospheric layers at the altitudes zk, zl the overlap parameter αk,l and321

a decorrelation length Lα are usually related to each other via the following relation (322

Hogan and Illingworth (2000); Bergman and Rasch (2002); Mace and Benson-Troth (2002))323

:324

αk,l = exp

(
−
∫ zl

zk

dz

Lα(z)

)
(15)

If the decorrelation length Lα is constant on the vertical (which is generally assumed),325

it becomes :326

αk,l = e−|zl−zk|/Lα (16)

The decorrelation length (and hence the overlap parameter of a scene) is often com-327

puted by fitting an exponential function to the profile of the overlap parameter depen-328

dance to the separation distance |zk − zl| (Hogan and Illingworth (2000); Oreopoulos329

and Norris (2011)), according to Eq. (16). Fig. 5 shows the variations of the overlap pa-330

rameters α computed at different times of the day of the ARMCu simulations, with three331

different methods. The overlap parameter αLES,fit is computed by fitting an exponen-332

tial function to the profile of the overlap parameter on our LES simulations with Eq. (16).333

This profile was obtained by computing the mean overlap parameter for each possible334

separation distance by using CFs = αCFmax+(1−α)CFrand. The overlap parameter335

α25,Dz corresponds to the overlap parameter computed using Eq. (14) to reproduce the336

total cloud cover CC with vertical subgriding from a vertical resolution Dz=100 m to337

dz=25 m. The overlap parameter αLES,loc is the mean of the local consecutive overlap338

parameters αk,k−1 on the LES simulations at dz=25 m.339

Three simulation times (hours 4,5,13) show poorly consistent values, caused by a340

smaller cloud cover of those scenes when the cloud layer is developping in the morning341

and dissipating at the end of the day. Without these three time steps, for the hours 6342

to 12, the mean values of those overlap parameters are ᾱ25,Dz=0.915, ᾱLES,loc=0.916343

and ᾱLES,fit=0.866. The equivalent decorrelation lengths are L̄α,25,Dz=291 m, L̄α,loc=298344

m and L̄α,fit=205 m. The values computed locally on the LES and the ones computed345

for ERO are close and stable during the day, when the exponential fit shows much wider346

variations. In the BOMEX case however (with the same resolutions), the overlap param-347

eter daily averages are closer to each other: we find ᾱ25,Dz=0.87, ᾱloc=0.88 and ᾱfit=0.85,348

and equivalently L̄α,25,Dz=179 m, L̄α,loc=195 m and L̄α,fit=153 m. The decorrelation349

lengths that are computed here (Lα =200 ∼ 300 m) are comparable to those computed350

in the litterature with similar LES simulations (Neggers et al. (2011); Sulak et al. (2020);351

Villefranque et al. (2021)). The difference with decorrelation lengths in the litterature352

that take into account the overlap of whole atmospheric columns in global model is fur-353

ther discussed in Section 5.354

We have also computed the overlap parameter α using ERO like done previously355

but on the individual largest clouds of the studied scenes, and found very similar results356

than for the total scene. For instance, for the scene ARMCu(h=10) when taking into357

account the 45 clouds that account for 99% of the total cloud cover (out of 67 individ-358

ual clouds in the scene), the mean overlap parameter over the different clouds is α25,Dz =359

0.913 (with a standard deviation of 0.07), which is equivalent to a decorrelation length360

of 275 m.361
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Figure 5. Overlap parameters computed with three different methods (see text) at each time

step of the LES simulations. The data used are the ARMCu cloud fields.

4 Using ERO to model subgrid properties and overlap coarse verti-362

cal layers363

To summarize the previous section, if we know the overlap parameter α25,Dz or the364

total cloud cover of the scene, and its volume cloud fraction CF for every cloudy layer365

of thickness Dz as well as the LWC mean value, we are able to generate a sample of sub-366

columns with a higher vertical resolution (25 m, the same as the LES) with properties367

that are close to the LES so that the cloud albedo of the scene only differs by a few per-368

cent (about 2% on the whole day for the ARMCu and the BOMEX cases). But in this369

approach, the radiative computations are made on a high resolution vertical grid, not370

on the coarse one. In this section we will focus on how to adapt the method to deal di-371

rectly with coarse grids, without having to use a finer mesh. To do so we will charac-372

terize how the subgrid properties of clouds should be computed on the coarse grid, and373

then how they should be combined vertically so that both the vertical cloud structure,374

the total cloud cover and in fine the cloud albedo remain close enough to the high-resolution375

reference case.376

4.1 Subgrid properties on the coarse grid377

Defining subgrid properties on the coarse vertical grid requires to distinguish two378

cloud fractions, the surface cloud fraction CFs and the volume cloud fraction CFv (Genio379

et al. (1996); Jouhaud et al. (2018)). CFv represents the volume fraction of the layer that380

contains clouds ( i.e. where liquid or solid water particules are present), whereas CFs381

represents the surface fraction of the layer covered by clouds when looking from above382

or below. In other words, CFs is the vertical projection of CFv, and it is CFs that is used383

by radiation codes in GCMs and teledetection.384

At the LES grid scale, we have assumed that a grid cell is either clear or cloudy,385

and therfore CFv=CFs. This is no longer the case on a coarse grid, and ERO can be386

used to compute CFs in a coarse layer of an atmospheric column, knowing CFv.387
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For that we consider an atmospheric cloudy column of coarse vertical resolution388

Dz=n×dz. If CFv is known and vertically uniform within each coarse layer, we are back389

in the configuration we were in Section 3 when using subgriding, with CFv,k=ĈF k. We390

can then compute the subgrid surface cloud fraction CFs,sg,k as the total cloud cover of391

a single coarse layer, by using Eq. (14), but setting to zero the volume cloud fractions392

above and below the coarse layer considered (N=1) :393

CFs,sg,k = 1− (1− CFv,k)(αsg + (1− αsg)(1− CFv,k))n−1 (17)

where αsg is the overlap parameter used here to compute this subgrid surface cloud394

fraction. Although other choices are possible, we choose here to use αsg=α25,Dz. If the395

total cloud cover CC is known but not α25,Dz we can compute it by inverting Eq. (12).396

The next figure illustrates the performance of that equation.397

The top panels of Fig. 6 show the profile of CFs obtained using the LES original398

data, using Eq. (17), and also assuming maximum overlap within each layer, for two coarse399

resolutions (left panel at Dz=100 m and right panel Dz=200 m). When using Eq. (17),400

two slightly different values of α are used for Dz=100 m (α25,100=0.921) and Dz=200401

m (α25,200=0.911), to ensure that the total cloud cover is the same. The maximum over-402

lap assumption (grey) does a poor job representing the surface cloud fraction profile, and403

leads to a relative error of 30% to 50%. It shows the error made when neglecting sub-404

grid variability, i.e. assumming CFs=CFv on the coarse grid. For this assumption, the405

coarser the vertical resolution, the larger the error. Using Eq. (17) allows a better rep-406

resentation of the surface cloud fractions, even if a substantial error remains. For all meth-407

ods, the largest error corresponds to the lower layer which is the bottom of the cloud layer.408

On this layer the volume cloud fraction CFv decreases steeply, which makes the hypoth-409

esis of a constant CFv inaccurate.410

To go further we also compare the performance of Eq. (17) with that of other ref-411

erences in the litterature. Neggers et al. (2011) and Jouhaud et al. (2018) have both been412

developed using LES data of small cumulus with CFv ≈ 0.1, including the ARMCu and413

BOMEX cases, and are therefore comparable to our method. Brooks et al. (2005) de-414

velops a lidar and radar-based parametrization of CFs using CFv, with the possibility415

to take into account wind shear (not used here), and is valid on a wider range of cloud416

covers and situations. Brooks et al. (2005) and Jouhaud et al. (2018) show the small-417

est errors with CFs of the LES.418

Our approach favours an accurate cloud cover on the whole vertical extent of the419

cloud layer. Results show that with this approach we tend to underestimate the surface420

cloud fraction of the coarse layers. This is because the overlap parameter α has been com-421

puted to match the total cloud cover of the whole scene, not the surface cloud fraction422

CFs of each coarse layer. When only used for the subgrid scale it creates too small a sur-423

face cloud fraction. This underestimation is still much smaller than when considering424

maximum overlap. The gap in surface cloud fraction caused by using our method is sim-425

ilar to those caused by other approximations of the litterature, but whith an opposite426

sign in the difference. Our underestimation of (CFs)z was already visible in Fig. 2 on427

the panel showing “cloud cover above z”. The only difference between using subgriding428

or not is the hypothesis CFvol=cst in each coarse layers, so we can conclude than the429

underestimation of our method comes from this hypothesis.430
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Figure 6. Vertical distribution of the surface cloud fraction (CFs)z obtained with LES full

resolution results or with different approximations with a coarse vertical resolution of 100 m (left

panels) or 200 m (right panels). The top panels compare the LES (dashed black) with ERO us-

ing Eq. (17) and αsg=α25,Dz (blue) as well as the maximum overlap sample (grey). The bottom

panels also compare Eq. (17) with other parametrizations found in the litterature. The cloud

case is ARMCu (h=10).

4.2 Interlayer overlap431

We now consider that the vertical profile of the surface cloud fraction (CFs,sg)z that432

takes into account the subgrid heterogeneity on the coarse grid is known. We have to433

define the overlap of the coarse layers, and we again choose to define it to ensure the con-434

servation of the total cloud cover CC. To compute the subgrid surface cloud fraction pro-435

file (CFs,sg)z in the previous section, we were using the first part of Eq. (14), which rep-436

resents the subgrid overlap. We here use the second part of the equation, which repre-437

sents the interlayer overlap, using the unknown interlayer overlap αinter.438
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This corresponds to using Eq. (10) on the coarse grid with (CFs,sg)z to produce439

the total cloud cover:440

CC = 1−
N∏
k=1

[
αinter(1−max(CFs,sg,k, CFs,sg,k−1))

1− CFs,sg,k−1
+ (1− αinter)(1− CFs,sg,k)

]
(18)

The overlap parameter αinter can be computed as in the previous sections, by in-441

verting Eq. (18) to constrain the cloud cover CC:442

αinter = f−1∅ (1− CC) (19)

4.3 Generating subcolumns on the coarse grid443

To summarize the previous steps, we can now compute the overlap parameter α25,Dz444

with Eq. (12), the subgrid cloud fractions (CFs,sg)z using Eq. (17) with αsg=α25,Dz,445

and then the overlap parameter αinter using Eqs. (18,19) in order to overlap these coarse446

layers to produce the total cloud cover CC. The corresponding decorrelation length can447

be computed with Eq. (16) and Dz as the separation distance. However, at this stage,448

there is no evidence of a formal link between these two overlap parameters or decorre-449

lation lengths, or of a dependence to the vertical resolution. In any case, we have not450

found one.451

We find that α25,Dz and the corresponding decorrelation length (Fig. 7, blue plots,452

left and middle panels) depend little on the starting coarse resolution Dz on this 25−200453

m range, with mean values α25,Dz=0.915 and Lα,25,Dz=291 m. Using this overlap and454

Eq. (17) we then compute the subgrid profile (CFs,sg)z, as well as the interlayer over-455

lap parameter αinter using Eqs. (18,19).456

Figure 7. Overlap parameters (left) and decorrelation lengths (middle) for the ARMCu simu-

lations (hours 6 to 12), for different coarse resolutions Dz and for different reconstructions using

ERO (see text). The daily mean value is shown. The overlap parameters are computed to match

the total cloud cover of the LES. The right panel shows the corresponding relative error in SW

cloud albedo at TOA compared to that of the LES when using those overlap parameters to gen-

erate the scenes. For each plot, the standard deviation due to the different simulation times is

shown as an error bar.

We found that the overlap parameter αinter varies with the resolution Dz but the457

corresponding decorrelation length varies little from Lα,sg=326 m (Fig. 7, black plots,458
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left and middle panels). The decorrelation lengths show small variation whether we gen-459

erate the subcolumns on the fine or coarse grid, and depends little on the resolution of460

the coarse grid (Fig. 7, middle panel, blue and black lines). When it comes to radiative461

effects (Fig. 7, right panel), the error made on the SW cloud albedo is still small even462

when computed on the coarse grid (black plot) rather than on the finer grid (blue plot).463

4.4 Analysis and comparisons of interlayer overlap for different estima-464

tions of the surface cloud fraction465

Here we investigate, using Eqs. (18,19), how the overlap parameter αinter and the466

decorrelation length should vary to keep the correct value of the total cloud cover for dif-467

ferent estimations of the surface cloud fraction CFs in Eq. (18), instead of CFs,sg. First468

we consider the extreme case where no subgrid heterogeneity is considered (Fig. 7, green469

plots), meaning the subgrid surface cloud fraction equals the volume cloud fraction (CFs,no−sub)z=(CFv)z470

on the coarse grid. When the starting coarse resolution is Dz=25 m, we are already at471

the finest resolution of the simulations (which means the coarse grid can not be finer),472

and all the reconstructions are the same. As shown in Fig. 6, for any altitude z we have473

: CFv,z < CFs,z, so to generate the same total cloud cover, the overlap when no sub-474

grid is taken into account has to be closer to random (i.e. α closer to 0), hence αinter,no−sub475

< αinter,sg. For Dz=200 m, the interlayer overlap without subgriding is already almost476

fully random. We then consider the case where the subgrid reconstruction takes perfectly477

into account the subgrid heterogeneity and reproduces perfectly the surface cloud cover478

profile (CFs,perfect)z (Fig. 7, red plots). We then compute the interlayer overlap cor-479

responding to this profile with Eqs. (18,19). The same reason applies to explain the dif-480

ference with the interlayer overlap parameters computed for the subgrid cloud fraction481

profile: as shown in Fig. 6, CFs,sg approaches CFs,perfect in such a way that for any al-482

titude CFs,perfect > CFs,sg > CFs,no−sub. To conserve the same total cloud cover we483

then get αinter,perfect > αinter,sg > αinter,no−sub.484

The middle panel of Fig. 7 shows the corresponding decorrelation lengths, com-485

puted from each overlap parameter α with Lα=−dz/ln(α), where dz is the vertical res-486

olution of the target grid. When doing overlap on the coarse grid, the final resolution487

is dz=Dz (red, black and green plots). When doing ERO on the finer grid, the final res-488

olution is dz=25 m (blue plots). We see that for interlayer overlap, the decorrelation lengths489

have a strong dependence to the resolution when overlapping coarse layers of which the490

surface fraction is either perfect (CFs,perfect)z or determined assuming no subgrid het-491

erogeneity (CFs,no−sub)z, with important variations. This is not the case when the sur-492

face cloud fraction CFs,sg is computed using a consistent representation of cloud het-493

erogeneity on both subgrid scale and interlayer overlap (black) or when reconstructing494

on the finer grid (blue). Numerical tests were made on artificial cloud scenes with con-495

stant cloud fractions and various cloud covers, as well as on the same LES with double496

the vertical extent to go up to 400 m coarse resolutions, and this appears to be a con-497

sistent result : strong dependence of the decorrelation lengths with the coarse resolution498

when overlapping (CFs,perfect)z and (CFs,no−sub)z, but a small dependence to the res-499

olution of the decorrelation length when overlapping CFs,sg . This dependence of Lα with500

Dz has already been mentioned by Hogan and Illingworth (2000) and Räisänen et al.501

(2004), but does not seem to be taken into account in the litterature when generating502

cloudy subcolumns from GCMs or for observational simulators (Pincus et al. (2005); Bodas-503

Salcedo et al. (2011); Swales et al. (2018)).504

4.5 Cloud albedo dependence on the vertical cloud structure505

We have shown in Section 3.1 that by using ERO and a subgrid overlap parame-506

ter on a finer grid (Fig. 4 and blue plots of Fig. 7) we can reproduce the cloud albedo507

of those scenes with a 2% relative error. In the previous section we show that it is also508

possible to take into account the subgrid scale directly on the coarse grid by choosing509
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to compute the suface cloud fraction as a bulk subgrid property using the volume cloud510

fraction and a subgrid overlap parameter. Overlapping this computed subgrid cloud frac-511

tion leads to a relative error in cloudy albedo of ≈ 10% for coarse resolutions of 100 m512

and 200 m (Fig. 7, black plot). If this subgrid computation were perfect to take into ac-513

count the subgrid scale, it would lead to a slightly improved 5−8% relative error in cloud514

albedo for coarse resolutions of 100 m and 200 m (Fig. 7, red plot). Finally, even with-515

out taking into account any subgrid scale by overlapping (CFs,no−sub)z on the coarse516

grid, we can approach the albedo of the LES scenes within a 20% relative error (for a517

resolution of 200 m, Fig. 7, green plot) if the total cloud cover is reproduced. As all the518

generations shown in Fig. 7 have the same total cloud cover and mean liquid water path519

as the LES simulations, the difference in cloud albedo are all due to vertical subgrid het-520

erogeneity. If the conservation of the total cloud cover is of first order importance for the521

cloud albedo, the subgrid scale information contained in the cloud fraction profile can522

have a significant impact on the cloud albedo as well, up to 20%. Numbers in this sec-523

tion are computed on 7 scenes from the ARMCu cloud case, but similar results were also524

found consistently in several other cases, see Figs. S1-S3 in Supporting Information.525

5 Implications526

In this last section we address some more global implications of our method, es-527

pecially on the use and estimate of the decorrelation lengths, as well as the radiative im-528

pact of LWC horizontal heterogeneity, which had not been taken into account in this pa-529

per until now.530

5.1 How to generate the cloud vertical profile531

The starting point of the developments in Section 3 and 4 was to determine how532

to correctly represent the cloud cover and the SW cloud albedo of a cloud scene in the533

context of exponential-random overlap. We have shown in Section 3 that by defining the534

appropriate decorrelation length Lα,25,Dz we can generate a cloud scene with the cor-535

rect cloud cover and a close SW cloud albedo. This can be done on a new grid with higher536

vertical resolution (25 m here) as long as the initial coarse resolution and the final res-537

olution are both taken into account in the computation of the overlap. This can also be538

done directly on the coarse grid without losing much accuracy on the cloud albedo by539

taking into account both the subgrid scale and the interlayer overlap (section 4.3).540

So far we have assumed that the cloud cover is known, whereas in general we are541

trying to determine the cloud cover. So we have to reverse the previous problem and ad-542

dress the following question : how to create the right cloud cover and the right cloud albedo543

from the information given by a coarse grid? In this context, an important result of sec-544

tion 4.3 is that if we consistently account for subgrid heterogeneity and coarse layer over-545

lap, then the decorrelation lengths used for the subgrid and the overlap are almost the546

same and they depend weakly on the vertical resolution, as we can see on Fig. 7.547

The procedure for reconstructing a cloud scene that we propose is as follow: given548

any volume cloud fraction profile (CFv)z at resolution Dz and the decorrelation length549

Lα for a reference resolution (here dz=25 m), the subgrid heterogeneity is taken into ac-550

count by computing a profile of the surface cloud fraction (CFs,sg)z with Eq. (17), with551

n=Dz/dz in the equation. The same decorrelation length Lα, allows to overlap these coarse552

layers and to compute the total cloud cover (Eq. (18)). As we can see on Fig. 7 for the553

case studied here, Lα,25,Dz≈291 m and Lα,sg≈326 m, so for both steps of this reconstruc-554

tion we choose to use the unique decorrelation length that is the mean of the two: L̄α=309555

m. We find similar results than those shown on Fig. 7 for three other cumulus cloud cases556

simulated by the same LES and the same resolutions, with Lα,25,Dz and Lα,sg relatively557

independent of the resolution. For the RICO case we have L̄α=217 m, for BOMEX L̄α=202558

m and for SCMS L̄α=273 m (see Figs. S1-S3 in Supporting Information). Here a dif-559
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ferent decorrelation length has been computed for each cloud case. The determination560

of this decorrelation length in a more general case is beyond the scope of this study. As561

it can be seen on Fig. 8, the scenes generated with this method show a good reproduc-562

tion of the cloud cover, cloud albedo and total albedo, with relative errors compared to563

the LES of only −10%, 11%, and −3% respectively, which is significantly better than564

the errors caused by the maximum-random assumption. We also see from this figure that565

the maximum overlap causes a “too few too bright” bias here, with a cloud cover too small566

and a cloud albedo too large. But the two errors do not compensate and the total albedo567

of the scenes is underestimated. Increasing the liquid water content seen in the radia-568

tive computations to balance the mean radiative flux at TOA could correct the value of569

total albedo but in the same time would also worsen the “too bright” part of the bias.570

Similar results are found for the three other cloud cases and can be found in the Sup-571

porting Information on Figs. S4 to S6.572

Figure 8. Cloud albedo (top panel), total albedo (middle panel) and total cloud cover (lower

panel) for the LES (in red), our reconstruction using ERO (in black) and a maximum overlap

reconstruction (grey). The constant decorrelation length used here both for the subgrid compu-

tation of the surface cloud fraction profile and its interlayer overlap is Lα=309 m. The scenes are

the ARMCu case (time steps h∈[4, 13]). In all scenes the LWC is homogeneous at each vertical

level.
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5.2 Variations of the decorrelation length with the measurement res-573

olution574

Decorrelation lengths used in GCMs are often derived from observational data from575

active remote sensing (Oreopoulos and Norris (2011); Jing et al. (2016)). As shown in576

the previous section, the vertical resolution of the grid on which we generate the cloud577

scene can have a significant impact on the values of overlap parameters and decorrela-578

tion lengths. This may also be applied to the vertical resolution at which those instru-579

ments measure cloud fraction profiles, their overlap and hence decorrelation lengths. At580

the vertical resolution of those instruments, for example 480 m for CloudSat, a layer is581

identified as entierely cloudy even if the cloud does not fully extend on the vertical of582

the layer. Hence the measured profile is the surface cloud fraction (CFs)z for a coarse583

layer of thickness Dz=480 m. Combining Eqs. (17,18,19), we can compute overlap pa-584

rameters in various situations, including when dealing with different vertical resolutions.585

This can be used to compare overlap parameters given by observational measures with586

different resolutions.587

We will consider that two different instruments I1 and I2 have the vertical reso-588

lutions dz1 and dz2, which is finer, with dz1=n×dz2. We suppose they observe the same589

cloud scene and detect the same cloud cover. Those instruments give us access to two590

sets of data statistically representing the same cloud scene : (CFs,1)z, Lα,1, and (CFs,2)z,591

Lα,2, where Lα,i are the decorrelation lengths corresponding to the measured surfacic592

cloud fraction profiles.593

Using the cloud fraction profile with finer vertical resolution CFs,2 we can use in-594

terlayer ERO with Lα,2 on blocks of n fine layers to compute the corresponding surface595

cloud fraction profile at the resolution dz1, CF ′s,1. Knowing the total cloud cover CC,596

we can then compute with Eq. (19), the decorrelation length L′α,1 that would generate597

CC with this profile. We can compare Lα,1 and L′α,1 now that they refer to similar res-598

olutions.599

For the ARMCu simulations used on Fig. 7, let us consider I1 with resolution dz1=200600

m and I2 with resolution dz2=25 m. This example is studied in section 4.4, where we601

analyzed the evolution of Lα with the vertical resolution for a perfect estimation of the602

surface cloud fraction profile. I2 would measure a decorrelation length Lα,2=320 m, while603

I1 would measure Lα,1=658 m (Fig. 7 middle panel, in red). We get a factor 2 on the604

estimation of the decorrelation length in this case. The vertical extension of the stud-605

ied clouds is too small to be able to compute the decorrelation lenght in the case of the606

vertical resolution of CloudSat at 480 m, but an even larger effect is expected.607

The decorrelation lengths computed from observations with a low vertical resolu-608

tion (a couple hunder meters) are often much larger than the ones computed in this study,609

with Lα ∼ 2 km (Hogan and Illingworth (2000); Willèn et al. (2005); Barker (2008a);610

Oreopoulos and Norris (2011); Jing et al. (2016)). This difference can then partly be ex-611

plained by the difference in vertical resolution, as the decorrelation lengths shown here612

are comparable to those computed in the litterature with LES simulations with similar613

vertical resolutions (Neggers et al. (2011); Sulak et al. (2020); Villefranque et al. (2021)).614

The difference in horizontal resolutions (Naud et al. (2008); Astin and Di Girolamo (2014);615

Tompkins and Di Giuseppe (2015)) can also impact the overlap, but it is not studied here.616

5.3 Considering LWC distributions617

Until now, we focused on the vertical distribution of the cloud fraction and cover,618

and therefore assumed an homogeneous LWC in each horizontal layer. In this section619

we add distributions of the LWC between the subcolumns and study its impact on the620

radiative properties of the generated scenes. The impact of the LWC heterogeneity on621

the cloud albedo of a scene is well documented and known to be of second order com-622

pared to the accurate reproduction of the cloud cover (Barker et al. (1999); Barker and623

Räisänen (2005); Oreopoulos et al. (2012)). We want to check the ability of our method624
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to reproduce those results, and compare the second order impacts of the LWC horizon-625

tal heterogeneity to those of the cloud fraction subgrid vertical heterogeneity shown in626

Section 4.5. To do so we use ERO with vertical subgriding, assuming that the horizon-627

tal distribution of the LWC in each horizontal layer follows the following gamma distri-628

bution, as done in Räisänen et al. (2004) :629

f(x, k, θ) =
xk−1e−

x
θ

Γ(k)θk
for x > 0 k, θ > 0

where x is the liquid water content in kg/kg, kθ is the mean of the distribution and630

kθ2 its variance, Γ(k) is the gamma function, with Re(k) > 0 :631

Γ(z) =

∫ ∞
0

tz−1e−tdt

This distribution can be described by its first two moments. In addition to the first632

moment, which we have already assumed to be known, the second moment must there-633

fore be specified for each horizontal layer. We have chosen not to take into account the634

rank correlation here, as its radiative impact was shown to be of a lesser importance for635

the integrated cloud albedo (Oreopoulos et al. (2012)).636

We generate the cloud field with LWC distributions from an atmospheric column637

(Dz=100 m) to a sample of subcolumns with the same vertical resolution as the LES638

(dz=25 m), and display on Fig. 9 the LWC of both scenes’ cloudy subcolumns after they639

have been sorted along their vertical LWP (bottom panels). The equivalent generation640

with no horizontal heterogeneity of the LWC is shown as a comparison in the top pan-641

els. When using LWC distributions, the generated subcolumns shows the same carac-642

teristics than the LES : a lot of subcolumns with a small LWP, as well as a LWP increas-643

ing with the altitude, and a small number of subcolumns with a high amount of LWP.644

The generated subcolumns shows demarcations every 100 m that are coming from the645

coarse vertical resolution of the atmospheric column because the profile (CFv)z and the646

LWC properties are assumed to be constant in each coarse horizontal layer. The LWC647

heterogeneity also causes more disparity in the LWC values, especially high values, which648

are smoothed out in the homogeneous plots.649

We then quantify the impact of the LWC horizontal distribution on radiative prop-650

erties. To do so we look at the relative difference of cloud albedo between LES simula-651

tions with the exact LWC heterogeneity and their ERO generations with and without652

LWC heterogeneity. They were generated from the coarse resolution Dz=100 m to the653

LES vertical resolution dz=25 m like done in Section 3, for the two cases ARMCu and654

BOMEX. Introducing LWC horizontal distributions significantly improves the cloudy albedo655

: the mean relative difference with that of the LES with exact LWC goes from 8.5% to656

2.4% for ARMCu and from 12.7% to 2% for BOMEX. Comparing the LES with exact657

LWC and their homogeneous versions we find the scenes without LWC horizontal het-658

erogeneity are ≈ 10% brighter, which confirms the previous findings of Barker et al. (2003),659

Wu and Liang (2005), and Shonk and Hogan (2010).660
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Figure 9. The liquid water content of each scene’s cloudy subcolumns in the LES simulations

(left panels) and reconstructed using ERO (right panels). The subcolumns have been sorted

along their LWP (red plots). The red lines represent the LES (dashed line) and generated (solid

line) LWP, the former being represented on the right panels as well to facilitate the comparison.

Top panels are homogeneous LWC for each level and whereas it varies in the bottom panels.

Our method is able to reproduce the known impact of LWC horizontal heterogene-661

ity, which is comparable to the impact of the subgrid vertical heterogeneity of the cloud662

fraction, discussed in Section 4.3.663

6 Summary and conclusion664

In this paper we presented a method based on the exponential-random overlap (ERO)665

assumption that allows to statistically represent the vertical structure of cloud scenes666

at different vertical resolutions. We focus on low-level clouds and show that a single value667

of the overlap parameter, a fundamental parameter of ERO that is directly related to668

the decorrelation length, is sufficient to represent the whole cloud scene.669

Within the McICA framework, we propose an algorithm to generate the cloud frac-670

tion on a high resolution vertical grid for an ensemble of subcolumns using a single low671

resolution atmospheric column and either the total cloud cover or the overlap param-672

eter. Compared to reference LES simulations, the generated cloud scenes show a correct673

representation of both the distribution of cumulative cloud fraction among cloudy sub-674

columns and the vertical profile of the cloud cover seen from above or below. We sug-675

gest that the later is a simple diagnostic that would usefully complement the usual cloud676

fraction vertical profile when comparing models with observations or when developping677

models. The generated cloudy albedos are very close to the ones of the original LES cloud678

scenes, with only a 2% relative error for the best reconstructions.679
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To avoid having to generate the cloud fraction profile on a high resolution verti-680

cal grid, we investigate how to represent both the subgrid variability within coarse lay-681

ers and the overlap of these coarse layers to ensure correct values of total cloud cover and682

cloud albedo. We demonstrate that, depending on how the subgrid variability is repre-683

sented, the decorrelation length used to overlap the coarse layers may be highly depen-684

dent on their vertical resolution. However, we show that the subgrid variability and the685

interlayer overlap can be defined in such a way to define a decorrelation length almost686

independent of the resolution.687

We also demonstrate that the decorrelation lengths obtained from remote sensing688

depend on the vertical resolution of the instruments. For a same cloud scene, the decor-689

relation length obtained from an instrument with a vertical resolution of 200 m can be690

two times larger that the one obtained with an instrument with a vertical resolution of691

25 m. This may partly explain why the decorrelation lengths obtained by the studies692

using CloudSat observations are about 7 times larger that those obtained from high res-693

olution models. If the decorrelation length can take into account the distance between694

cloudy layers to compute the overlap parameters, the thickness of the layers also has to695

be taken into account when estimating decorrelation lengths, as well as whether the cloud696

fractions are volumic or surfacic. Although this deserves more investigations, we provide697

a framework that allows to go from one vertical resolution to an other. Further work is698

also required to establish robust estimates of the decorrelation length for a large vari-699

ety of clouds.700

To our best knowledge, most current atmospheric models neglect the effect of sub-701

grid variability on the cloud fraction and assume a maximum-random overlap of cloud702

layers or a ERO with a quite large decorrelation length (≈ 2−3 km). This can lead to703

an underestimation of the cloud cover by a factor of two, at least for low-level clouds,704

and therefore explain a significant part of the underestimation of these clouds that is iden-705

tified in current climate models (Konsta et al. (2022)). A better consideration of sub-706

grid heterogeneity and cloud overlap in the models should allow this bias to be reduced,707

but would also require a significant revision of the amount of condensed water so that708

the global albedo does not change too much. This would contribute to reduce the cur-709

rent too few too bright bias.710

In addition to the effect of the water content heterogeneity on cloud albedo, already711

well recognized, we show that the vertical distribution of cloud fraction also matters. In-712

deed, for a low-level cloud scene with a given cloud cover and cloud water path, the cloud713

albedo can change by about 20% according to how the vertical profile of the clouds frac-714

tion is represented. As we focused on the vertical structure of clouds within the plan par-715

allel approximation, we have not taken into account the solar angle or 3D radiative ef-716

fects. We computed that averaged over a whole day, the relative 3D effects on the SW717

cloud albedo are about 7% to 18% for the cases used in this study. Further work would718

be needed to link ERO with a 3D representation of clouds.719
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Appendix A Implementation and difference between ERO and Räisänen’s720

cloud generating algorithm721

For a cloudy block that extends continuously between the vertical levels [kbase, ktop]722

(with #([kbase, ktop]) = N our algorithm works as follows:723

We generate a sample of Ns subcolumns. The Ns×N different cells of this sam-724

ple are represented by the indices i ∈ [1, Ns] and k ∈ [kbase, ktop]. Starting from the725

top of each subcolumn, the algorithm computes for each cell the coefficient ci,k ∈ {0, 1},726

which corresponds to whether the cell is cloudy or not , as well as the liquid water con-727

tent.728

For the top cell of the subcolumn i, ci,ktop is computed as:729

ci,ktop =

{
0 for RN1i,ktop ≤ 1− CFktop ( clear )
1 for RN1i,ktop > 1− CFktop ( cloudy )

i ∈ [1, Ns] (A1)

where RN1 are random numbers evenly distributed on [0, 1]. Working its way down, the730

algorithm computes the next coefficients, as follows, for each cell (i, k): let RN2i,k be731

new random numbers evenly distributed on [0, 1].732

• maximum overlap: if RN2i,k < α, the cell is in maximum overlap with the
one above (i, k − 1). Its cloudy state ci,k is computed as :

ci,k = ci,k−1(1 | 1)max + (1− ci,k−1)(1 | 0)max

where (ck|ck−1)max are booleans computed according to the transition probabil-733

ities Pmax(Ck = ck | Ck−1 = ck−1) which is defined by Eq. 6 when Ck=Ck−1.734

To complete this implementation, according to Eq. (2), we also have:735

Pmax(Ck = 1 | Ck−1 = 0) = 1− Pmax(Ck = 0 | Ck−1 = 0) =
max(CFk−1, CFk)

1− CFk−1
(A2)

• random overlap: if RN2i,k > α, it’s in random overlap with the cell above.
Its cloudy state ci,k is computed as :

ci,k = (1 | 1)rand = (1 | 0)rand

where (ck|ck−1)rand are booleans computed with the transition probability Prand736

defined by Eq. (5).737

After this we have generated a cloud field with a total cloud cover of CC, with a738

standard deviation decreasing as 1/
√
Ns, and with conservation of the initial cloud frac-739

tion CFk, k ∈ [kbase, ktop].740

This algorithm is mainly based on Räisänen et al. (2004). The main difference be-741

tween those two algorithms is about the generation on random numbers. When gener-742

ating the cloud fraction (as well as the cloud condensate amout) of a given cell k, Räisänen743

generator computes xk ∈ [0, 1] to compare it to the cloud fraction of the cell CFk and744

decide wether the cell is cloudy or not. The computation to get xk is :745

xk =

{
xk−1, for RN2 k ≤ αk−1,k
RN3 k, for RN2 k > αk−1,k

(A3)

where αk−1,k is the overlap parameter between levels k and k−1, and RN2 and746

RN3 are two random numbers evenly distributed between 0 and 1.747
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In the first case, the two cells are in maximum overlap and in the second one they748

are in random overlap, a new independent random number being drawn. With only two749

levels our method is equivalent, but for more than two levels, Räisänen’s method can cre-750

ate correlation on the whole vertical subcolumn being generated, as the same random751

number can be kept for many different cells.752

By computing directly the transition probabilities to generate the cloud fraction753

of a cell (Pmax(1 | 1), Pmax(1 | 0), Prand(1 | 1), Prand(1 | 0)), and by using a different754

random number every time it is needed, we conserve the cloud fraction without creat-755

ing this correlation between the layers.756
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project EMC-Sat). A repository containing the scripts for the ERO algorithm presented761

in this paper is available at https://github.com/raphleb/ERO.git. The sources described762

in this paper for the radiative computations are available at the websites (https://www.meso-763

star.com/projects/htrdr/htrdr.html and https://www.meso-star.com/projects/star-engine/star-764

engine.html).765

References766

Astin, I., & Di Girolamo, L. (2014). Technical note: The horizontal scale depen-767

dence of the cloud overlap parameter . Atmos. Chem. Phys., 14 (18), 9917–9922.768

doi: 10.5194/acp-14-9917-2014769

Barker, H. W. (2008a). Overlap of fractional cloud for radiation calculations in770

GCMs: A global analysis using CloudSat and CALIPSO data. J. Geophys. Res.-771

Atm., 113 (D8). doi: https://doi.org/10.1029/2007JD009677772

Barker, H. W. (2008b). Representing cloud overlap with an effective decorrela-773

tion length: An assessment using cloudsat and calipso data. J. Geophys. Res.-Atm.,774

113 (D24). doi: https://doi.org/10.1029/2008JD010391775
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Abstract13

Many global climate models underestimate the cloud cover and overestimate the cloud14

albedo, especially for low-level clouds. We determine how a correct representation of the15

vertical structure of clouds can fix part of this bias. We use the 1D McICA framework16

and focus on low-level clouds. Using LES results as reference, we propose a method based17

on exponential-random overlap (ERO) that represents the cloud overlap between lay-18

ers and the subgrid cloud properties over several vertical scales, with a single value of19

the overlap parameter. Starting from a coarse vertical grid, representative of atmospheric20

models, this algorithm is used to generate the vertical profile of the cloud fraction with21

a finer vertical resolution, or to generate it on the coarse grid but with subgrid hetero-22

geneity and cloud overlap that ensures a correct cloud cover. Doing so we find decorre-23

lation lengths are dependent on the vertical resolution, except if the vertical subgrid het-24

erogeneity and interlayer overlap are taken into account coherently. We confirm that the25

frequently used maximum-random overlap leads to a significant error by underestimat-26

ing the low-level cloud cover with a relative error of about 50%, that can lead to an er-27

ror of SW cloud albedo as big as 70%. Not taking into account the subgrid vertical het-28

erogeneity of clouds can cause an additional relative error of 20% in brightness, assum-29

ing the cloud cover is correct.30

Plain Language Summary31

Low-level clouds are the main source of spread in model estimates of climate sen-32

sitivity, but climate models resolutions do not allow them to explicitly resolve the ge-33

ometrical complexity of low-level clouds, which must be parametrized. Most climate mod-34

els low-level clouds have a cloud cover too small and a cloud albedo too high, which is35

known as the “too few too bright bias”. In this work we determine whether a better rep-36

resentation of the vertical structure of clouds can fix part of this bias. We use high-resolution37

simulations as references and radiative transfer algorithms to assess the performances38

of our cloud generation, in the framework of commonly used overlap assumptions. When39

the cloud cover of the scene is known, we show that the exponential-random overlap al-40

lows a good representation of the vertical structure of clouds and of the cloud albedo.41

We find the decorrelation lengths used to model the overlap are highly dependent on the42

model vertical resolution, and present a way to overcome this dependency when both sub-43

grid scale and interlayer overlap are taken into account consistently. We present values44

that can be used to compute accurately the cloud cover and the cloud albedo of the stud-45

ied scenes.46

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems

1 Introduction47

The size and the spatial structure of clouds vary by several orders of magnitude48

(Koren et al. (2008)). The size of the horizontal meshes of global and regional atmospheric49

circulation models typically range from a few kilometers to a few hundred kilometers,50

and their vertical resolution in the troposphere is typically from ten to several hundred51

meters. Thus the geometric representation of clouds in these models at scales smaller52

than those of the mesh sizes must be parametrized, especially to compute the radiative53

effect of clouds that is of crucial importance for the climate.54

The cloud geometry in a model is generally simply described by a horizontal frac-55

tion of the layer being cloudy, the remaining part being clear. In the cloudy part, the56

in-cloud liquid or solid amount of water is often assumed to be uniform, although some57

improved representations have been proposed (Räisänen et al. (2004); Hogan and Shonk58

(2013)). The cloud cover and the mean optical depth of the cloudy region are inter-dependent59

when the profile of cloud fractions and water contents are known. They depend on how60

the cloud fractions overlap on the vertical: if they overlap maximally, the cloud cover61

will be minimum and the mean optical depth maximum, and if they overlap randomly,62

the cloud cover will be larger and the mean optical depth smaller.63

How the cloud fraction (CF ) of each atmospheric layer overlap with other layers64

has been widely studied (Geleyn and Hollingsworth (1979); Barker et al. (1999); Jakob65

and Klein (1999)). Many recent studies use an exponential-random scheme approach where66

the probability of two layers overlapping decreases exponentially with the distance be-67

tween them (Hogan and Illingworth (2000); Bergman and Rasch (2002); Tompkins and68

Di Giuseppe (2007); Shonk and Hogan (2010)). The corresponding decorrelation length69

scale has been estimated from satellite radar observations (Jing et al. (2016)), in-situ ob-70

servations (Mace and Benson-Troth (2002)), and high resolution model simulations (Neggers71

et al. (2011)). Studies have shown that the decorrelation length can be parametrized as72

a function of the horizontal wind profile of the column (Pincus et al. (2005); Di Giuseppe73

and Tompkins (2015); Sulak et al. (2020)).74

The vertical subgrid heterogeneity of the cloud fraction has been less investigated.75

Atmospheric model cloud schemes calculate the cloud fraction as the volume of the grid76

box that contains clouds, CFv, but radiation is primarily sensitive to the surface cloud77

fraction CFs which is the relative surfacic fraction covered by clouds in a cell. Often im-78

plicitly, these two fractions are assumed to be equal, i.e. the clouds are assumed to be79

homogeneous on the vertical in each cell. This can seem logical on the first order given80

the area/depth ratio of the grid cells, however, recent studies show that this may intro-81

duce significant biases, as the distribution of cloud water can be vertically heterogeneous82

in layers as thin as 100 m (Brooks et al. (2005); Jouhaud et al. (2018)), and that CFs83

is typically greater than CFv by about 30% (Neggers et al. (2011)). A direct consequence84

of not taking into account this difference is that, for a given cloud faction in volume, the85

surface fraction of the clouds is too small and the water content per unit of cloud frac-86

tion (and therefore the cloud albedo) too large.87

Considering these results, we address the following questions: can we use exponential-88

random overlap to statistically represent the vertical structure of cloud scenes, only us-89

ing a small number of aggregated quantities, to simulate precisely radiative fluxes ? How90

does this representation depend on the vertical resolution ? What is the radiative error91

that is induced when the subgrid vertical structure of the clouds is not explicitely resolved92

and hence not seen by radiation ? To answer them we propose an overlap model that93

ensures consistency between the overlap between cloudy layers and the representation94

of subgrid heterogeneity. Indeed, we contend that both are intended to represent the same95

characteristic of clouds, their vertical distribution, and that the distinction between the96

two depends on the vertical resolution of the atmospheric model, which can vary. Like97

done in the McICA method, we neglect the 3D effects and keep the classical plane par-98
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allel assumption (each vertical profile represents a stack of horizontally infinite and ho-99

mogeneous slabs) in our 1D approach. Assuming that the volumic cloud fraction and wa-100

ter content are known on a coarse vertical grid consisting in a single column, typical of101

an atmospheric model, we developed an algorithm to generate an ensemble of subcolumns102

to statistically represent the heterogeneity of clouds.103

The manuscript is organised as follows: in Section 2, we consider the exponential-104

random overlap (ERO) as a Markov process and show its ability to represent the ver-105

tical distribution of the cloud fraction over a wide range of scales that includes both the106

subgrid scale and the overlap between layers. In Section 3 we study cloud scenes with107

known cloud covers, and compute the overlap parameters and decorrelation lengths that108

should be used with ERO on finer grids to reproduce those cloud covers, and doing so109

we assess the radiative impact of ERO on the SW cloud alebdo of the generated subcolumns.110

We also study the effects of different simplifying assumptions. Section 4 focuses on re-111

producing those results directly on the coarse grid, taking into account both the inter-112

layer overlap and the subgrid scale, assuming again that the cloud cover is known. The113

implication for cloud parameterization in atmospheric models and for how to estimate114

the decorrelation lengths are presented in Section 5.115

2 Statistical representation of the cloud fraction vertical distribution116

The model explored here is the so-called exponential-random overlap (ERO) model117

of Hogan and Illingworth (2000). We will only look at single-layer cumulus cloud fields118

so the “random” part of the model, which concerns cloudy layers that are separated by119

clear layers, will not be studied. The “exponential” part of the model states that the com-120

bined cloud fraction of two adjacent cloudy layers of surfacic fractions CF1 and CF2 is:121

CF1,2 = αCF1,2,max + (1− α)CF1,2,rand

where CF1,2,max is the combined surfacic cloud fraction of the two layers in case122

they overlap maximally:123

CF1,2,max = max(CF1, CF2)

and CF1,2,rand is the combined surfacic cloud fraction of the two layers in case they124

overlap randomly:125

CF1,2,rand = CF1 + CF2 − CF1CF2

In this model, “exponential” refers to the fact that α can be parametrized with an126

exponential function (see further). This model has been used in two different manners127

in radiative transfer parameterizations: either in a deterministic way, to compute the over-128

lap matrix that is used to distribute downwelling and upwelling fluxes from clear and129

cloudy regions of a layer into clear and cloudy regions of an adjacent layer ( TripleClouds,130

Shonk and Hogan (2008)), or in a probabilistic manner, to generate a sample of verti-131

cal profiles that preserve, when averaged, the principal characteristics of the cloud scene132

(the cloud fraction and the liquid water content in each layer), and upon which radia-133

tive transfer is simulated under the plane-parallel homogeneous assumption ( McICA,134

Pincus et al. (2003)). In this paper, the McICA framework is used to generate samples135

of vertical profiles. The main difference is that in the usual McICA algorithm, the pro-136

files are generated on the vertical grid of the host model, while here we aim at generat-137

ing profiles at any vertical resolution, including finer vertical resolutions.138
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Unless otherwise stated, in all this article, we consider a single vertical atmospheric139

column that consists of a cloudy block (with a strictly positive liquid water content at140

every level) of N vertical layers. From this column we assume the volume cloud fraction141

of each layer, (CFk)k=1...N , is known. We consider the exponential-random overlap model142

(ERO) as a Markovian process and deduce the relationship between the overlap param-143

eter α and the total cloud cover CC. We then use the same result to deal with subgrid144

vertical heterogeneity.145

2.1 ERO as a Markovian process: a sequence of conditional probabil-146

ities147

Using a certain overlap scheme in an atmospheric column to generate a cloud frac-148

tion distribution from top to bottom can be interpreted as a Markovian process as it is149

a sequence of overlapping or non-overlapping events. It is then possible to compute its150

outcome as a sequence of conditional probabilities, as done by Bergman and Rasch (2002).151

In a single atmospheric column of N vertical layers, let us consider a 1D subcol-152

umn. We want to articulate how the overlap used for the whole atmospheric column trans-153

lates to a subcolumn. If ~C = (Ck)k=1...N is the random variable representing the cloud154

fraction distribution of the subcolumn, with Ck ∈ {0, 1} (whether the cell is cloudy or155

not), and k is the vertical index,with k = 1 at the top of the column, the probability156

of a certain state ~C = (ck)k=1...N ∈ [0, 1]N is given by:157

P (~C) =

N∏
k=1

P (Ck = ck | Ck−1 = ck−1) (1)

where C0 = 0 (i.e. there is no cloud above the cloud block considered here). We158

use the classic upper case notation Ck for the random variables and the lower case no-159

tation ck for their realizations.160

For any level k in the subcolumn, the probability to have ck = 1 is the cloud frac-161

tion of the level, meaning P (Ck = 1) = CFk. We’ll call P (Ck = ck | Ck−1 = ck−1) a162

transition probability, it is the probability that in a subcolumn, layer k is in the state ck,163

knowing the layer k−1 is in the state ck−1. Since ck is either 0 or 1, there are only four164

possible types of transition between two levels, and being able to compute their prob-165

abilities at every level gives the probability of any vertical cloud fraction distribution for166

the column. Moreover, for each level k, two out of the four transition probabilities are167

dependant, as a layer is either cloudy or clear sky:168

{
P (Ck = 0 | Ck−1 = 1) = 1− P (Ck = 1 | Ck−1 = 1)

P (Ck = 1 | Ck−1 = 0) = 1− P (Ck = 0 | Ck−1 = 0)
(2)

Therefore, it is enough to know for instance the two transition probabilities P (Ck =169

1|Ck−1 = 1) and P (Ck = 0|Ck−1 = 0) for each level k to compute the probability of170

any given state of overlap for the column, using Eq.(1).171

The transition probability P (Ck = 1 | Ck−1 = 1) is the probability that both172

levels of the subcolumn are cloudy, knowing that the level k−1 is already cloudy. By173

definition, we have:174

P (Ck = 1 | Ck−1 = 1) =
P (Ck = 1 ∩ Ck−1 = 1)

P (Ck−1 = 1)
(3)

where (Ck = 1 ∩ Ck−1 = 1) is the event with both layers cloudy. If we assume175

an exponential-random overlap we have :176
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P (Ck = 1 | Ck−1 = 1) = αPmax(Ck = 1 | Ck−1 = 1) + (1− α)Prand(Ck = 1 | Ck−1 = 1)
(4)

where Pmax and Prand are the corresponding transition probabilities, in a subcol-177

umn, of maximum overlap and random overlap between two consecutive layers of the at-178

mospheric column. By definition of random overlap the probability of being cloudy at179

level k is independent of the conditions at level k − 1:180

Prand(Ck = 1 | Ck−1 = 1) = Prand(Ck = 1 | Ck−1 = 0) = Prand(Ck = 1) = CFk (5)

The transition probability in a subcolumn of the maximum overlap can be obtained181

using Eq. (3): if CFk−1 < CFk : Pmax(Ck = 1 | Ck−1 = 1) = 1, and on the con-182

trary if CFk−1 ≥ CFk: Pmax(Ck = 1 | Ck−1 = 1) = CFk
CFk−1

183

As a result,184

Pmax(Ck = 1 | Ck−1 = 1) =
min(CFk−1, CFk)

CFk−1
(6)

and (4) becomes :185

P (Ck = 1 | Ck−1 = 1) = α
min(CFk−1, CFk)

CFk−1
+ (1− α)CFk (7)

Let us compute Pmax(Ck = 0 | Ck−1 = 0) in the same way, and we get :186

Pmax(Ck = 0 | Ck−1 = 0) =
1−max(CFk−1, CFk)

1− CFk−1

and therefore:187

P (Ck = 0 | Ck−1 = 0) = α× (1−max(CFk−1, CFk))

1− CFk−1
+ (1− α)(1− CFk) (8)

These equations and exponential-random overlap more generally are applicable only188

for non overcast cloudy layers (i.e. CF ∈]0, 1[). Having computed the transition prob-189

abilities between different cloud states of the cells, we can now use them to generate sub-190

columns. The details of the implementation are presented in Appendix A, along with191

the main difference with the work of Räisänen et al. (2004), from which our algorithm192

is very much inspired. Thanks to Eqs. (7), (8) and (2) we can now compute the differ-193

ent transition probabilities for each layer k, knowing α. Then using Eq. (1) we can com-194

pute the probability to generate any vertical cloud fraction distribution for a subcolumn,195

for any exponential-random overlap parameter α ∈ [0, 1].196

2.2 The relationship between the overlap parameter α and the total cloud197

cover198

In a similar fashion as the work done by Barker (2008a, 2008b), we are now going199

to establish the relationship between the overlap parameter α and the total cloud cover200

CC, assuming ERO.201
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To obtain the formal expression of the total cloud cover from the previous equa-202

tions, it is easier to compute the probability of having no cloud for a whole subcolumn.203

Indeed P∅ corresponds to transition probabilities ’clear-sky/clear-sky’ of the form P (0|0).204

The probability to generate a fully clear-sky subcolumn can be seen as a first order Markov205

chain probability and therefore computed as the product of conditional probabilities, as206

seen in the previous section:207

P∅ =

N∏
k=1

P (Ck = 0 | Ck−1 = 0) (9)

Using Eq. (8) we get:208

P∅(α, (CF )1...N ) =

N∏
k=1

[α ∗(1−max(CFk−1, CFk)

)
1− CFk−1

+ (1− α)(1− CFk)

]
(10)

Given this equation, if we know the overlap parameter α, the total cloud cover is:209

CCERO = 1− P∅(α, (CF )1...N ) (11)

On the other hand if the total cloud cover CC is known, we can then determine210

the overlap parameter α that matches the total cloud cover CC :211

α = f−1∅ (1− CC) (12)

where212

f∅ : α ∈ [0, 1]→ f∅(α) = P∅(α, (CF )1...N )

For a given (CF )1...N profile (with CFk ∈]0, 1[ for each layer) and knowing CC,213

the function f∅ is strictly increasing, so f−1∅ exists. We compute α with a dichotomy method214

using a tolerance ε = 10−5.215

Eq. (12) gives the expression of α for a given cloud cover CC and cloud fraction216

profile (CF ). Eq. (10) allows us to compute CC if we know the overlap parameter α and217

the profile (CF ). Therefore for any given profile (CF ) and given the ERO model, it is218

equivalent to know CC or α (or the decorrelation length, see further).219

2.3 Vertical Subgriding220

We are now going to use the same method but to define how to generate a sam-221

ple of subcolumns with a higher vertical resolution starting from an atmospheric column222

with a coarse vertical resolution. We start from such a single column of N coarse lay-223

ers from which we know the vertical volume cloud fraction distribution {ĈFk}k=1...N ,224

and we generate subcolumns with n times more vertical levels, N = (N × n). We in-225

troduce the hypothesis that at every coarse level of the atmospheric column, the volume226

cloud fraction is the same for all the n sublayers :227

∀ l ∈ Lnk , CFl = ĈFk
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where Lnk is the ensemble of n sublayers within the coarse layer k.228

We then compute, like done previously, the probability P∅ to generate a clear-sky229

subcolumn. As the cloud fraction in a single coarse cell is uniform, the intralayer tran-230

sition probability P (Cl = 0|Cl−1 = 0) (Eq. (8)) between layers inside the same coarse231

cell simplifies as :232

P (Cl = 0|Cl−1 = 0) = Pintra,l = α+ (1− α)(1− CFl) (13)

For two adjacent cells that belong to two adjacent coarse layers, CFk and CFk−1233

can be different and the interlayer overlap transition probability, P (Ck = 0|Ck−1 =234

0) = Pinter,k is given by Eq. (8). Finally, P∅ is given by:235

P∅(α,N, n,CF ) =

N∏
k=1

[
Pinter,k

n−1∏
1

Pintra,k

]

=

N∏
k=1

[[
α+ (1− α)(1− ĈF k)

]n−1]

×

[α ∗(1−max(ĈF k−1, ĈF k)

)
1− ĈF k−1

+ (1− α)(1− ĈF k)

]
(14)

Like done previously, we can compute the cloud cover generated by a given over-236

lap parameter α, or if the total cloud cover of the scene is known, we can inverse this237

equation using Eq. (12) to compute the overlap parameter α that generates the same238

cloud cover. The next section shows the results of this subgriding: both its impacts on239

the cloud fraction profiles and the radiative properties of the ERO samples.240

3 Evaluating α and the cloud generation241

As done in many previous works such as Larson et al. (2002); R. A. J. Neggers et242

al. (2003); Neggers et al. (2011), we are using Large Eddy Simulations (LES) as refer-243

ence cases to assess our ERO algorithm. To test the algorithm presented in the previ-244

ous section, different shallow cumulus cloud cases have been used. We mostly studied245

the ARMCu cloud case (Brown et al. (2002)) showing the development of shallow cu-246

mulus convection over land, as well as two marine, trade-winds cumulus cloud cases BOMEX247

(Siebesma et al. (2003)) and RICO (vanZanten et al. (2011)), and another case of con-248

tinental cumulus SCMS (Neggers et al. (2003b)). For each case we use the correspond-249

ing LES results obtained with the atmospheric non-hydrostatic model MESO-NH (Lafore250

et al. (1998); Lac et al. (2018)), and all these simulations represent a 6.4 km× 6.4 km×251

4 km domain with a dx=dy=dz=25 m resolution. For each LES simulation we coarsen252

it into a single atmospheric column with the same vertical resolution dz, or a lower ver-253

tical resolution Dz, as shown in Fig. 1. For each of these single columns we know, by254

means of the LES, the total cloud cover CC, as well as the cloud fraction and the liq-255

uid water content at each vertical level. Doing so we go from a highly detailed 3D sim-256

ulation to a single column, and we lose the horizontal cloud structure. Using this sin-257

gle column we then sample subcolumns with the ERO algorithm presented in the pre-258

vious section. Finally, we assess this generation by comparing the statistical properties259

and solar albedo of the subcolumns with those of the LES.260
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Figure 1. Method used to develop and assess our cloudy columns sampling. The LES cloud

field of resolution dx=dy=dz=25 m is horizontally averaged into a single column and eventually

averaged vertically to a coarse resolution Dz>dz. We then sample Ns subcolumns with a vertical

resolution dz using the ERO algorithm, and then assess the process by comparing the sample’s

cloud fraction profile and TOA SW cloud albedo to the ones of the original LES.

3.1 Testing ERO and subgriding assuming the overlap parameter has261

a vertically constant value262

To assess the ERO generation process we first test the assumption that it is suf-263

ficient to use a single overlap parameter α for the whole cloud scene. We use an atmo-264

spheric column with a coarser vertical grid than the LES (Dz=100 m for the coarse res-265

olution, dz=25 m for the LES), and then use subgriding with the method presented in266

Section 2.3 to generate a sample of Ns subcolumns with a higher vertical resolution. The267

overlap parameter α used to generate this sample is computed with Eqs. (12,14) to en-268

sure the same cloud cover as the original scene (a similar approach is taken by Barker269

(2008a, 2008b)). Here and for the rest of the study, Ns ≈ 6.5 × 104 subcolumns have270

been generated. For this number, the total cloud cover of the LES is reproduced with271

a standard deviation 2.10−3, and it has been verified that the standard deviation is de-272

creasing like 1/
√
Ns, where Ns is the number of subcolumns generated, as predicted by273

the central limit theorem. As a first test, we assess how the cloud fraction seen from above274

or from below at altitude z varies as a function of this altitude (Fig. 2).275

The blue line (Fig. 2, middle and right panels) is the cloud cover profile of the orig-276

inal LES, with a total cloud cover of 0.2325. The grey line is obtained using a maximum277

overlap assumption, and shows a total cloud cover of only ∼ 10%. Since the scene con-278

sists of a single cloud block, this corresponds to models using the classical maximum-279

random overlap and assuming the cloud fraction is vertically uniform within each coarse280

layer. The orange line is computed with ERO to match the total cloud cover of the LES281

(α = 0.921), with a very close total cloud cover of 0.231 for that sample. The two plots282

on the right show that the ERO sampled subcolumns not only have the same total cloud283

cover than the LES, but also a close projected cloud cover at each vertical level. The abrupt284

changes in the cloud cover of the sampled subcolumns are a consequence of the hyopthe-285
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sis of a constant volume cloud fraction CFv in each coarse cell. For the generation with-286

out vertical subgriding of the previous section (Dz=dz=25 m), the vertical distribution287

of the cloud cover is almost indiscernible to that of the LES (not shown).288

Figure 2. Vertical distribution of the volume cloud fraction (left), of the total cloud cover

above (middle) and below (right) altitude z. The former is the projected total cloud cover of all

the clouds between the top of the domain and altitude z, the latter is the projected cloud cover

between the bottom of the domain and altitude z. On the middle and right panels are compared

the profiles from the LES (blue) and those obtained with two overlap models : maximum overlap

(grey) and ERO (orange). The red dot line shows the total cloud cover CC of the scene. Both

samples were made using the same initial single column with a vertical resolution Dz=100 m

and have the same final vertical resolution dz=25 m than the LES. The data presented is the

ARMCu cloud case (time step h=10).

Figure 3. The cloudy subcolumns of the LES scene (left) are sorted along the number of

cloudy cells in each subcolumns (dashed red). On the right the cloudy subcolumns out of a

Ns≈6.5×104 sample of subcolumns generated with ERO sorted in the same way (solid red for

the number of cloudy cells of the ERO profile). The number of cloudy cells of the LES has been

reproduced in dashed to compare it better with that of the ERO generation. The field used is the

10th hour of the ARMCu case.

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems

To go further, Fig. 3 shows the cloudy subcolumns of the same scene (cloudy cells289

in blue) sorted along the number of cloudy cells in each subcolumn (red). The left panel290

shows the cloudy subcolumns of the original LES, and the right panel shows the same291

plot for the sample of subcolumns generated by ERO. The vertical distribution of cloudy292

cells are very close, it shows the ERO generation not only reproduces the total cloud cover293

of the original scene, but also the distribution of cumulative cloud fraction.294

We then assess the radiative characteristics of the sample by comparing the short-295

wave (SW) radiative properties of the LES and that of the ERO sample. We compute296

the mean albedo of the cloudy subcolumns (i.e we do not consider any clear sky subcolumns)297

for different cloud scenes using a path-tracing Monte Carlo code from Villefranque et al.298

(2019). It tracks photon paths throughout a virtual atmosphere, explicitly simulating299

the radiative processes such as scattering, absorption, and surface albedo. When a pho-300

ton hits the top of the atmosphere (TOA), the algorithm adds its weight to a TOA counter301

(for reflection toward space), to a ground counter when it touches the ground (for ground302

absorption, here we put the ground albedo at zero), or to an atmospheric counter when303

it is absorbed (by liquid water or a gas). As the generated sample has no horizontal struc-304

ture, we use the Independant Column Approximation -or ICA - (Pincus et al. (2003)).305

Fig. 4 shows the cloud albedo of different sampling hypotheses, of the original LES scenes,306

as well as the total albedo of the scenes, and their total cloud cover. For each value of307

the coarse resolution Dz, a new overlap parameter has been computed : the different ERO308

scenes hence have the same total cloud covers.309

The maximum overlap assumption (grey) shows a much higher cloud albedo since310

it produces cloud scenes with less total cloud cover and hence brighter clouds. Using ERO311

produces a much closer cloud albedo, and the coarse resolution of the initial atmospheric312

single column has little impact : the relative difference with the cloud albedo of the ho-313

mogeneous LES starting with a 25 m vertical resolution is ∼ 1.5% and only of ∼ 2.5%314

when starting with a 200 m vertical resolution, for the simulation hours [6, 12].315
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Figure 4. Cloud albedo (top panel), total albedo (middle panel) and total cloud cover (lower

panel) for the LES (in red), for ERO with different coarse resolutions Dz and for maximum over-

lap with the coarse resolution Dz=100 m (in grey). The albedo of each scene is computed using

a Monte-Carlo algorithm under the Indenpendant Column Approximation, for the ARMCu cloud

case scenes (time steps h∈[4, 13]). The surface albedo is set at zero, Dz is the vertical resolution

of the coarse atmospheric single column and dz that of the reconstructed sample. In all scenes

the in-cloud LWC is homogeneous at each vertical level. For each computation, 106 realisations

were made, with a Monte-Carlo standard deviation of the cloud albedo of 10−6.
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3.2 Analysis of the overlap parameter α316

In Section 2 we established the relationship between the overlap parameter α and317

the total cloud cover CC and used it in 3.1 to determine α from the total cloud cover318

CC diagnosed from LES results. In this section we analyze the overlap parameters com-319

puted this way and compare them to the values given by other methods. For two dif-320

ferent cloudy atmospheric layers at the altitudes zk, zl the overlap parameter αk,l and321

a decorrelation length Lα are usually related to each other via the following relation (322

Hogan and Illingworth (2000); Bergman and Rasch (2002); Mace and Benson-Troth (2002))323

:324

αk,l = exp

(
−
∫ zl

zk

dz

Lα(z)

)
(15)

If the decorrelation length Lα is constant on the vertical (which is generally assumed),325

it becomes :326

αk,l = e−|zl−zk|/Lα (16)

The decorrelation length (and hence the overlap parameter of a scene) is often com-327

puted by fitting an exponential function to the profile of the overlap parameter depen-328

dance to the separation distance |zk − zl| (Hogan and Illingworth (2000); Oreopoulos329

and Norris (2011)), according to Eq. (16). Fig. 5 shows the variations of the overlap pa-330

rameters α computed at different times of the day of the ARMCu simulations, with three331

different methods. The overlap parameter αLES,fit is computed by fitting an exponen-332

tial function to the profile of the overlap parameter on our LES simulations with Eq. (16).333

This profile was obtained by computing the mean overlap parameter for each possible334

separation distance by using CFs = αCFmax+(1−α)CFrand. The overlap parameter335

α25,Dz corresponds to the overlap parameter computed using Eq. (14) to reproduce the336

total cloud cover CC with vertical subgriding from a vertical resolution Dz=100 m to337

dz=25 m. The overlap parameter αLES,loc is the mean of the local consecutive overlap338

parameters αk,k−1 on the LES simulations at dz=25 m.339

Three simulation times (hours 4,5,13) show poorly consistent values, caused by a340

smaller cloud cover of those scenes when the cloud layer is developping in the morning341

and dissipating at the end of the day. Without these three time steps, for the hours 6342

to 12, the mean values of those overlap parameters are ᾱ25,Dz=0.915, ᾱLES,loc=0.916343

and ᾱLES,fit=0.866. The equivalent decorrelation lengths are L̄α,25,Dz=291 m, L̄α,loc=298344

m and L̄α,fit=205 m. The values computed locally on the LES and the ones computed345

for ERO are close and stable during the day, when the exponential fit shows much wider346

variations. In the BOMEX case however (with the same resolutions), the overlap param-347

eter daily averages are closer to each other: we find ᾱ25,Dz=0.87, ᾱloc=0.88 and ᾱfit=0.85,348

and equivalently L̄α,25,Dz=179 m, L̄α,loc=195 m and L̄α,fit=153 m. The decorrelation349

lengths that are computed here (Lα =200 ∼ 300 m) are comparable to those computed350

in the litterature with similar LES simulations (Neggers et al. (2011); Sulak et al. (2020);351

Villefranque et al. (2021)). The difference with decorrelation lengths in the litterature352

that take into account the overlap of whole atmospheric columns in global model is fur-353

ther discussed in Section 5.354

We have also computed the overlap parameter α using ERO like done previously355

but on the individual largest clouds of the studied scenes, and found very similar results356

than for the total scene. For instance, for the scene ARMCu(h=10) when taking into357

account the 45 clouds that account for 99% of the total cloud cover (out of 67 individ-358

ual clouds in the scene), the mean overlap parameter over the different clouds is α25,Dz =359

0.913 (with a standard deviation of 0.07), which is equivalent to a decorrelation length360

of 275 m.361
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Figure 5. Overlap parameters computed with three different methods (see text) at each time

step of the LES simulations. The data used are the ARMCu cloud fields.

4 Using ERO to model subgrid properties and overlap coarse verti-362

cal layers363

To summarize the previous section, if we know the overlap parameter α25,Dz or the364

total cloud cover of the scene, and its volume cloud fraction CF for every cloudy layer365

of thickness Dz as well as the LWC mean value, we are able to generate a sample of sub-366

columns with a higher vertical resolution (25 m, the same as the LES) with properties367

that are close to the LES so that the cloud albedo of the scene only differs by a few per-368

cent (about 2% on the whole day for the ARMCu and the BOMEX cases). But in this369

approach, the radiative computations are made on a high resolution vertical grid, not370

on the coarse one. In this section we will focus on how to adapt the method to deal di-371

rectly with coarse grids, without having to use a finer mesh. To do so we will charac-372

terize how the subgrid properties of clouds should be computed on the coarse grid, and373

then how they should be combined vertically so that both the vertical cloud structure,374

the total cloud cover and in fine the cloud albedo remain close enough to the high-resolution375

reference case.376

4.1 Subgrid properties on the coarse grid377

Defining subgrid properties on the coarse vertical grid requires to distinguish two378

cloud fractions, the surface cloud fraction CFs and the volume cloud fraction CFv (Genio379

et al. (1996); Jouhaud et al. (2018)). CFv represents the volume fraction of the layer that380

contains clouds ( i.e. where liquid or solid water particules are present), whereas CFs381

represents the surface fraction of the layer covered by clouds when looking from above382

or below. In other words, CFs is the vertical projection of CFv, and it is CFs that is used383

by radiation codes in GCMs and teledetection.384

At the LES grid scale, we have assumed that a grid cell is either clear or cloudy,385

and therfore CFv=CFs. This is no longer the case on a coarse grid, and ERO can be386

used to compute CFs in a coarse layer of an atmospheric column, knowing CFv.387
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For that we consider an atmospheric cloudy column of coarse vertical resolution388

Dz=n×dz. If CFv is known and vertically uniform within each coarse layer, we are back389

in the configuration we were in Section 3 when using subgriding, with CFv,k=ĈF k. We390

can then compute the subgrid surface cloud fraction CFs,sg,k as the total cloud cover of391

a single coarse layer, by using Eq. (14), but setting to zero the volume cloud fractions392

above and below the coarse layer considered (N=1) :393

CFs,sg,k = 1− (1− CFv,k)(αsg + (1− αsg)(1− CFv,k))n−1 (17)

where αsg is the overlap parameter used here to compute this subgrid surface cloud394

fraction. Although other choices are possible, we choose here to use αsg=α25,Dz. If the395

total cloud cover CC is known but not α25,Dz we can compute it by inverting Eq. (12).396

The next figure illustrates the performance of that equation.397

The top panels of Fig. 6 show the profile of CFs obtained using the LES original398

data, using Eq. (17), and also assuming maximum overlap within each layer, for two coarse399

resolutions (left panel at Dz=100 m and right panel Dz=200 m). When using Eq. (17),400

two slightly different values of α are used for Dz=100 m (α25,100=0.921) and Dz=200401

m (α25,200=0.911), to ensure that the total cloud cover is the same. The maximum over-402

lap assumption (grey) does a poor job representing the surface cloud fraction profile, and403

leads to a relative error of 30% to 50%. It shows the error made when neglecting sub-404

grid variability, i.e. assumming CFs=CFv on the coarse grid. For this assumption, the405

coarser the vertical resolution, the larger the error. Using Eq. (17) allows a better rep-406

resentation of the surface cloud fractions, even if a substantial error remains. For all meth-407

ods, the largest error corresponds to the lower layer which is the bottom of the cloud layer.408

On this layer the volume cloud fraction CFv decreases steeply, which makes the hypoth-409

esis of a constant CFv inaccurate.410

To go further we also compare the performance of Eq. (17) with that of other ref-411

erences in the litterature. Neggers et al. (2011) and Jouhaud et al. (2018) have both been412

developed using LES data of small cumulus with CFv ≈ 0.1, including the ARMCu and413

BOMEX cases, and are therefore comparable to our method. Brooks et al. (2005) de-414

velops a lidar and radar-based parametrization of CFs using CFv, with the possibility415

to take into account wind shear (not used here), and is valid on a wider range of cloud416

covers and situations. Brooks et al. (2005) and Jouhaud et al. (2018) show the small-417

est errors with CFs of the LES.418

Our approach favours an accurate cloud cover on the whole vertical extent of the419

cloud layer. Results show that with this approach we tend to underestimate the surface420

cloud fraction of the coarse layers. This is because the overlap parameter α has been com-421

puted to match the total cloud cover of the whole scene, not the surface cloud fraction422

CFs of each coarse layer. When only used for the subgrid scale it creates too small a sur-423

face cloud fraction. This underestimation is still much smaller than when considering424

maximum overlap. The gap in surface cloud fraction caused by using our method is sim-425

ilar to those caused by other approximations of the litterature, but whith an opposite426

sign in the difference. Our underestimation of (CFs)z was already visible in Fig. 2 on427

the panel showing “cloud cover above z”. The only difference between using subgriding428

or not is the hypothesis CFvol=cst in each coarse layers, so we can conclude than the429

underestimation of our method comes from this hypothesis.430
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Figure 6. Vertical distribution of the surface cloud fraction (CFs)z obtained with LES full

resolution results or with different approximations with a coarse vertical resolution of 100 m (left

panels) or 200 m (right panels). The top panels compare the LES (dashed black) with ERO us-

ing Eq. (17) and αsg=α25,Dz (blue) as well as the maximum overlap sample (grey). The bottom

panels also compare Eq. (17) with other parametrizations found in the litterature. The cloud

case is ARMCu (h=10).

4.2 Interlayer overlap431

We now consider that the vertical profile of the surface cloud fraction (CFs,sg)z that432

takes into account the subgrid heterogeneity on the coarse grid is known. We have to433

define the overlap of the coarse layers, and we again choose to define it to ensure the con-434

servation of the total cloud cover CC. To compute the subgrid surface cloud fraction pro-435

file (CFs,sg)z in the previous section, we were using the first part of Eq. (14), which rep-436

resents the subgrid overlap. We here use the second part of the equation, which repre-437

sents the interlayer overlap, using the unknown interlayer overlap αinter.438
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This corresponds to using Eq. (10) on the coarse grid with (CFs,sg)z to produce439

the total cloud cover:440

CC = 1−
N∏
k=1

[
αinter(1−max(CFs,sg,k, CFs,sg,k−1))

1− CFs,sg,k−1
+ (1− αinter)(1− CFs,sg,k)

]
(18)

The overlap parameter αinter can be computed as in the previous sections, by in-441

verting Eq. (18) to constrain the cloud cover CC:442

αinter = f−1∅ (1− CC) (19)

4.3 Generating subcolumns on the coarse grid443

To summarize the previous steps, we can now compute the overlap parameter α25,Dz444

with Eq. (12), the subgrid cloud fractions (CFs,sg)z using Eq. (17) with αsg=α25,Dz,445

and then the overlap parameter αinter using Eqs. (18,19) in order to overlap these coarse446

layers to produce the total cloud cover CC. The corresponding decorrelation length can447

be computed with Eq. (16) and Dz as the separation distance. However, at this stage,448

there is no evidence of a formal link between these two overlap parameters or decorre-449

lation lengths, or of a dependence to the vertical resolution. In any case, we have not450

found one.451

We find that α25,Dz and the corresponding decorrelation length (Fig. 7, blue plots,452

left and middle panels) depend little on the starting coarse resolution Dz on this 25−200453

m range, with mean values α25,Dz=0.915 and Lα,25,Dz=291 m. Using this overlap and454

Eq. (17) we then compute the subgrid profile (CFs,sg)z, as well as the interlayer over-455

lap parameter αinter using Eqs. (18,19).456

Figure 7. Overlap parameters (left) and decorrelation lengths (middle) for the ARMCu simu-

lations (hours 6 to 12), for different coarse resolutions Dz and for different reconstructions using

ERO (see text). The daily mean value is shown. The overlap parameters are computed to match

the total cloud cover of the LES. The right panel shows the corresponding relative error in SW

cloud albedo at TOA compared to that of the LES when using those overlap parameters to gen-

erate the scenes. For each plot, the standard deviation due to the different simulation times is

shown as an error bar.

We found that the overlap parameter αinter varies with the resolution Dz but the457

corresponding decorrelation length varies little from Lα,sg=326 m (Fig. 7, black plots,458
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left and middle panels). The decorrelation lengths show small variation whether we gen-459

erate the subcolumns on the fine or coarse grid, and depends little on the resolution of460

the coarse grid (Fig. 7, middle panel, blue and black lines). When it comes to radiative461

effects (Fig. 7, right panel), the error made on the SW cloud albedo is still small even462

when computed on the coarse grid (black plot) rather than on the finer grid (blue plot).463

4.4 Analysis and comparisons of interlayer overlap for different estima-464

tions of the surface cloud fraction465

Here we investigate, using Eqs. (18,19), how the overlap parameter αinter and the466

decorrelation length should vary to keep the correct value of the total cloud cover for dif-467

ferent estimations of the surface cloud fraction CFs in Eq. (18), instead of CFs,sg. First468

we consider the extreme case where no subgrid heterogeneity is considered (Fig. 7, green469

plots), meaning the subgrid surface cloud fraction equals the volume cloud fraction (CFs,no−sub)z=(CFv)z470

on the coarse grid. When the starting coarse resolution is Dz=25 m, we are already at471

the finest resolution of the simulations (which means the coarse grid can not be finer),472

and all the reconstructions are the same. As shown in Fig. 6, for any altitude z we have473

: CFv,z < CFs,z, so to generate the same total cloud cover, the overlap when no sub-474

grid is taken into account has to be closer to random (i.e. α closer to 0), hence αinter,no−sub475

< αinter,sg. For Dz=200 m, the interlayer overlap without subgriding is already almost476

fully random. We then consider the case where the subgrid reconstruction takes perfectly477

into account the subgrid heterogeneity and reproduces perfectly the surface cloud cover478

profile (CFs,perfect)z (Fig. 7, red plots). We then compute the interlayer overlap cor-479

responding to this profile with Eqs. (18,19). The same reason applies to explain the dif-480

ference with the interlayer overlap parameters computed for the subgrid cloud fraction481

profile: as shown in Fig. 6, CFs,sg approaches CFs,perfect in such a way that for any al-482

titude CFs,perfect > CFs,sg > CFs,no−sub. To conserve the same total cloud cover we483

then get αinter,perfect > αinter,sg > αinter,no−sub.484

The middle panel of Fig. 7 shows the corresponding decorrelation lengths, com-485

puted from each overlap parameter α with Lα=−dz/ln(α), where dz is the vertical res-486

olution of the target grid. When doing overlap on the coarse grid, the final resolution487

is dz=Dz (red, black and green plots). When doing ERO on the finer grid, the final res-488

olution is dz=25 m (blue plots). We see that for interlayer overlap, the decorrelation lengths489

have a strong dependence to the resolution when overlapping coarse layers of which the490

surface fraction is either perfect (CFs,perfect)z or determined assuming no subgrid het-491

erogeneity (CFs,no−sub)z, with important variations. This is not the case when the sur-492

face cloud fraction CFs,sg is computed using a consistent representation of cloud het-493

erogeneity on both subgrid scale and interlayer overlap (black) or when reconstructing494

on the finer grid (blue). Numerical tests were made on artificial cloud scenes with con-495

stant cloud fractions and various cloud covers, as well as on the same LES with double496

the vertical extent to go up to 400 m coarse resolutions, and this appears to be a con-497

sistent result : strong dependence of the decorrelation lengths with the coarse resolution498

when overlapping (CFs,perfect)z and (CFs,no−sub)z, but a small dependence to the res-499

olution of the decorrelation length when overlapping CFs,sg . This dependence of Lα with500

Dz has already been mentioned by Hogan and Illingworth (2000) and Räisänen et al.501

(2004), but does not seem to be taken into account in the litterature when generating502

cloudy subcolumns from GCMs or for observational simulators (Pincus et al. (2005); Bodas-503

Salcedo et al. (2011); Swales et al. (2018)).504

4.5 Cloud albedo dependence on the vertical cloud structure505

We have shown in Section 3.1 that by using ERO and a subgrid overlap parame-506

ter on a finer grid (Fig. 4 and blue plots of Fig. 7) we can reproduce the cloud albedo507

of those scenes with a 2% relative error. In the previous section we show that it is also508

possible to take into account the subgrid scale directly on the coarse grid by choosing509
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to compute the suface cloud fraction as a bulk subgrid property using the volume cloud510

fraction and a subgrid overlap parameter. Overlapping this computed subgrid cloud frac-511

tion leads to a relative error in cloudy albedo of ≈ 10% for coarse resolutions of 100 m512

and 200 m (Fig. 7, black plot). If this subgrid computation were perfect to take into ac-513

count the subgrid scale, it would lead to a slightly improved 5−8% relative error in cloud514

albedo for coarse resolutions of 100 m and 200 m (Fig. 7, red plot). Finally, even with-515

out taking into account any subgrid scale by overlapping (CFs,no−sub)z on the coarse516

grid, we can approach the albedo of the LES scenes within a 20% relative error (for a517

resolution of 200 m, Fig. 7, green plot) if the total cloud cover is reproduced. As all the518

generations shown in Fig. 7 have the same total cloud cover and mean liquid water path519

as the LES simulations, the difference in cloud albedo are all due to vertical subgrid het-520

erogeneity. If the conservation of the total cloud cover is of first order importance for the521

cloud albedo, the subgrid scale information contained in the cloud fraction profile can522

have a significant impact on the cloud albedo as well, up to 20%. Numbers in this sec-523

tion are computed on 7 scenes from the ARMCu cloud case, but similar results were also524

found consistently in several other cases, see Figs. S1-S3 in Supporting Information.525

5 Implications526

In this last section we address some more global implications of our method, es-527

pecially on the use and estimate of the decorrelation lengths, as well as the radiative im-528

pact of LWC horizontal heterogeneity, which had not been taken into account in this pa-529

per until now.530

5.1 How to generate the cloud vertical profile531

The starting point of the developments in Section 3 and 4 was to determine how532

to correctly represent the cloud cover and the SW cloud albedo of a cloud scene in the533

context of exponential-random overlap. We have shown in Section 3 that by defining the534

appropriate decorrelation length Lα,25,Dz we can generate a cloud scene with the cor-535

rect cloud cover and a close SW cloud albedo. This can be done on a new grid with higher536

vertical resolution (25 m here) as long as the initial coarse resolution and the final res-537

olution are both taken into account in the computation of the overlap. This can also be538

done directly on the coarse grid without losing much accuracy on the cloud albedo by539

taking into account both the subgrid scale and the interlayer overlap (section 4.3).540

So far we have assumed that the cloud cover is known, whereas in general we are541

trying to determine the cloud cover. So we have to reverse the previous problem and ad-542

dress the following question : how to create the right cloud cover and the right cloud albedo543

from the information given by a coarse grid? In this context, an important result of sec-544

tion 4.3 is that if we consistently account for subgrid heterogeneity and coarse layer over-545

lap, then the decorrelation lengths used for the subgrid and the overlap are almost the546

same and they depend weakly on the vertical resolution, as we can see on Fig. 7.547

The procedure for reconstructing a cloud scene that we propose is as follow: given548

any volume cloud fraction profile (CFv)z at resolution Dz and the decorrelation length549

Lα for a reference resolution (here dz=25 m), the subgrid heterogeneity is taken into ac-550

count by computing a profile of the surface cloud fraction (CFs,sg)z with Eq. (17), with551

n=Dz/dz in the equation. The same decorrelation length Lα, allows to overlap these coarse552

layers and to compute the total cloud cover (Eq. (18)). As we can see on Fig. 7 for the553

case studied here, Lα,25,Dz≈291 m and Lα,sg≈326 m, so for both steps of this reconstruc-554

tion we choose to use the unique decorrelation length that is the mean of the two: L̄α=309555

m. We find similar results than those shown on Fig. 7 for three other cumulus cloud cases556

simulated by the same LES and the same resolutions, with Lα,25,Dz and Lα,sg relatively557

independent of the resolution. For the RICO case we have L̄α=217 m, for BOMEX L̄α=202558

m and for SCMS L̄α=273 m (see Figs. S1-S3 in Supporting Information). Here a dif-559
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ferent decorrelation length has been computed for each cloud case. The determination560

of this decorrelation length in a more general case is beyond the scope of this study. As561

it can be seen on Fig. 8, the scenes generated with this method show a good reproduc-562

tion of the cloud cover, cloud albedo and total albedo, with relative errors compared to563

the LES of only −10%, 11%, and −3% respectively, which is significantly better than564

the errors caused by the maximum-random assumption. We also see from this figure that565

the maximum overlap causes a “too few too bright” bias here, with a cloud cover too small566

and a cloud albedo too large. But the two errors do not compensate and the total albedo567

of the scenes is underestimated. Increasing the liquid water content seen in the radia-568

tive computations to balance the mean radiative flux at TOA could correct the value of569

total albedo but in the same time would also worsen the “too bright” part of the bias.570

Similar results are found for the three other cloud cases and can be found in the Sup-571

porting Information on Figs. S4 to S6.572

Figure 8. Cloud albedo (top panel), total albedo (middle panel) and total cloud cover (lower

panel) for the LES (in red), our reconstruction using ERO (in black) and a maximum overlap

reconstruction (grey). The constant decorrelation length used here both for the subgrid compu-

tation of the surface cloud fraction profile and its interlayer overlap is Lα=309 m. The scenes are

the ARMCu case (time steps h∈[4, 13]). In all scenes the LWC is homogeneous at each vertical

level.
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5.2 Variations of the decorrelation length with the measurement res-573

olution574

Decorrelation lengths used in GCMs are often derived from observational data from575

active remote sensing (Oreopoulos and Norris (2011); Jing et al. (2016)). As shown in576

the previous section, the vertical resolution of the grid on which we generate the cloud577

scene can have a significant impact on the values of overlap parameters and decorrela-578

tion lengths. This may also be applied to the vertical resolution at which those instru-579

ments measure cloud fraction profiles, their overlap and hence decorrelation lengths. At580

the vertical resolution of those instruments, for example 480 m for CloudSat, a layer is581

identified as entierely cloudy even if the cloud does not fully extend on the vertical of582

the layer. Hence the measured profile is the surface cloud fraction (CFs)z for a coarse583

layer of thickness Dz=480 m. Combining Eqs. (17,18,19), we can compute overlap pa-584

rameters in various situations, including when dealing with different vertical resolutions.585

This can be used to compare overlap parameters given by observational measures with586

different resolutions.587

We will consider that two different instruments I1 and I2 have the vertical reso-588

lutions dz1 and dz2, which is finer, with dz1=n×dz2. We suppose they observe the same589

cloud scene and detect the same cloud cover. Those instruments give us access to two590

sets of data statistically representing the same cloud scene : (CFs,1)z, Lα,1, and (CFs,2)z,591

Lα,2, where Lα,i are the decorrelation lengths corresponding to the measured surfacic592

cloud fraction profiles.593

Using the cloud fraction profile with finer vertical resolution CFs,2 we can use in-594

terlayer ERO with Lα,2 on blocks of n fine layers to compute the corresponding surface595

cloud fraction profile at the resolution dz1, CF ′s,1. Knowing the total cloud cover CC,596

we can then compute with Eq. (19), the decorrelation length L′α,1 that would generate597

CC with this profile. We can compare Lα,1 and L′α,1 now that they refer to similar res-598

olutions.599

For the ARMCu simulations used on Fig. 7, let us consider I1 with resolution dz1=200600

m and I2 with resolution dz2=25 m. This example is studied in section 4.4, where we601

analyzed the evolution of Lα with the vertical resolution for a perfect estimation of the602

surface cloud fraction profile. I2 would measure a decorrelation length Lα,2=320 m, while603

I1 would measure Lα,1=658 m (Fig. 7 middle panel, in red). We get a factor 2 on the604

estimation of the decorrelation length in this case. The vertical extension of the stud-605

ied clouds is too small to be able to compute the decorrelation lenght in the case of the606

vertical resolution of CloudSat at 480 m, but an even larger effect is expected.607

The decorrelation lengths computed from observations with a low vertical resolu-608

tion (a couple hunder meters) are often much larger than the ones computed in this study,609

with Lα ∼ 2 km (Hogan and Illingworth (2000); Willèn et al. (2005); Barker (2008a);610

Oreopoulos and Norris (2011); Jing et al. (2016)). This difference can then partly be ex-611

plained by the difference in vertical resolution, as the decorrelation lengths shown here612

are comparable to those computed in the litterature with LES simulations with similar613

vertical resolutions (Neggers et al. (2011); Sulak et al. (2020); Villefranque et al. (2021)).614

The difference in horizontal resolutions (Naud et al. (2008); Astin and Di Girolamo (2014);615

Tompkins and Di Giuseppe (2015)) can also impact the overlap, but it is not studied here.616

5.3 Considering LWC distributions617

Until now, we focused on the vertical distribution of the cloud fraction and cover,618

and therefore assumed an homogeneous LWC in each horizontal layer. In this section619

we add distributions of the LWC between the subcolumns and study its impact on the620

radiative properties of the generated scenes. The impact of the LWC heterogeneity on621

the cloud albedo of a scene is well documented and known to be of second order com-622

pared to the accurate reproduction of the cloud cover (Barker et al. (1999); Barker and623

Räisänen (2005); Oreopoulos et al. (2012)). We want to check the ability of our method624
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to reproduce those results, and compare the second order impacts of the LWC horizon-625

tal heterogeneity to those of the cloud fraction subgrid vertical heterogeneity shown in626

Section 4.5. To do so we use ERO with vertical subgriding, assuming that the horizon-627

tal distribution of the LWC in each horizontal layer follows the following gamma distri-628

bution, as done in Räisänen et al. (2004) :629

f(x, k, θ) =
xk−1e−

x
θ

Γ(k)θk
for x > 0 k, θ > 0

where x is the liquid water content in kg/kg, kθ is the mean of the distribution and630

kθ2 its variance, Γ(k) is the gamma function, with Re(k) > 0 :631

Γ(z) =

∫ ∞
0

tz−1e−tdt

This distribution can be described by its first two moments. In addition to the first632

moment, which we have already assumed to be known, the second moment must there-633

fore be specified for each horizontal layer. We have chosen not to take into account the634

rank correlation here, as its radiative impact was shown to be of a lesser importance for635

the integrated cloud albedo (Oreopoulos et al. (2012)).636

We generate the cloud field with LWC distributions from an atmospheric column637

(Dz=100 m) to a sample of subcolumns with the same vertical resolution as the LES638

(dz=25 m), and display on Fig. 9 the LWC of both scenes’ cloudy subcolumns after they639

have been sorted along their vertical LWP (bottom panels). The equivalent generation640

with no horizontal heterogeneity of the LWC is shown as a comparison in the top pan-641

els. When using LWC distributions, the generated subcolumns shows the same carac-642

teristics than the LES : a lot of subcolumns with a small LWP, as well as a LWP increas-643

ing with the altitude, and a small number of subcolumns with a high amount of LWP.644

The generated subcolumns shows demarcations every 100 m that are coming from the645

coarse vertical resolution of the atmospheric column because the profile (CFv)z and the646

LWC properties are assumed to be constant in each coarse horizontal layer. The LWC647

heterogeneity also causes more disparity in the LWC values, especially high values, which648

are smoothed out in the homogeneous plots.649

We then quantify the impact of the LWC horizontal distribution on radiative prop-650

erties. To do so we look at the relative difference of cloud albedo between LES simula-651

tions with the exact LWC heterogeneity and their ERO generations with and without652

LWC heterogeneity. They were generated from the coarse resolution Dz=100 m to the653

LES vertical resolution dz=25 m like done in Section 3, for the two cases ARMCu and654

BOMEX. Introducing LWC horizontal distributions significantly improves the cloudy albedo655

: the mean relative difference with that of the LES with exact LWC goes from 8.5% to656

2.4% for ARMCu and from 12.7% to 2% for BOMEX. Comparing the LES with exact657

LWC and their homogeneous versions we find the scenes without LWC horizontal het-658

erogeneity are ≈ 10% brighter, which confirms the previous findings of Barker et al. (2003),659

Wu and Liang (2005), and Shonk and Hogan (2010).660
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Figure 9. The liquid water content of each scene’s cloudy subcolumns in the LES simulations

(left panels) and reconstructed using ERO (right panels). The subcolumns have been sorted

along their LWP (red plots). The red lines represent the LES (dashed line) and generated (solid

line) LWP, the former being represented on the right panels as well to facilitate the comparison.

Top panels are homogeneous LWC for each level and whereas it varies in the bottom panels.

Our method is able to reproduce the known impact of LWC horizontal heterogene-661

ity, which is comparable to the impact of the subgrid vertical heterogeneity of the cloud662

fraction, discussed in Section 4.3.663

6 Summary and conclusion664

In this paper we presented a method based on the exponential-random overlap (ERO)665

assumption that allows to statistically represent the vertical structure of cloud scenes666

at different vertical resolutions. We focus on low-level clouds and show that a single value667

of the overlap parameter, a fundamental parameter of ERO that is directly related to668

the decorrelation length, is sufficient to represent the whole cloud scene.669

Within the McICA framework, we propose an algorithm to generate the cloud frac-670

tion on a high resolution vertical grid for an ensemble of subcolumns using a single low671

resolution atmospheric column and either the total cloud cover or the overlap param-672

eter. Compared to reference LES simulations, the generated cloud scenes show a correct673

representation of both the distribution of cumulative cloud fraction among cloudy sub-674

columns and the vertical profile of the cloud cover seen from above or below. We sug-675

gest that the later is a simple diagnostic that would usefully complement the usual cloud676

fraction vertical profile when comparing models with observations or when developping677

models. The generated cloudy albedos are very close to the ones of the original LES cloud678

scenes, with only a 2% relative error for the best reconstructions.679
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To avoid having to generate the cloud fraction profile on a high resolution verti-680

cal grid, we investigate how to represent both the subgrid variability within coarse lay-681

ers and the overlap of these coarse layers to ensure correct values of total cloud cover and682

cloud albedo. We demonstrate that, depending on how the subgrid variability is repre-683

sented, the decorrelation length used to overlap the coarse layers may be highly depen-684

dent on their vertical resolution. However, we show that the subgrid variability and the685

interlayer overlap can be defined in such a way to define a decorrelation length almost686

independent of the resolution.687

We also demonstrate that the decorrelation lengths obtained from remote sensing688

depend on the vertical resolution of the instruments. For a same cloud scene, the decor-689

relation length obtained from an instrument with a vertical resolution of 200 m can be690

two times larger that the one obtained with an instrument with a vertical resolution of691

25 m. This may partly explain why the decorrelation lengths obtained by the studies692

using CloudSat observations are about 7 times larger that those obtained from high res-693

olution models. If the decorrelation length can take into account the distance between694

cloudy layers to compute the overlap parameters, the thickness of the layers also has to695

be taken into account when estimating decorrelation lengths, as well as whether the cloud696

fractions are volumic or surfacic. Although this deserves more investigations, we provide697

a framework that allows to go from one vertical resolution to an other. Further work is698

also required to establish robust estimates of the decorrelation length for a large vari-699

ety of clouds.700

To our best knowledge, most current atmospheric models neglect the effect of sub-701

grid variability on the cloud fraction and assume a maximum-random overlap of cloud702

layers or a ERO with a quite large decorrelation length (≈ 2−3 km). This can lead to703

an underestimation of the cloud cover by a factor of two, at least for low-level clouds,704

and therefore explain a significant part of the underestimation of these clouds that is iden-705

tified in current climate models (Konsta et al. (2022)). A better consideration of sub-706

grid heterogeneity and cloud overlap in the models should allow this bias to be reduced,707

but would also require a significant revision of the amount of condensed water so that708

the global albedo does not change too much. This would contribute to reduce the cur-709

rent too few too bright bias.710

In addition to the effect of the water content heterogeneity on cloud albedo, already711

well recognized, we show that the vertical distribution of cloud fraction also matters. In-712

deed, for a low-level cloud scene with a given cloud cover and cloud water path, the cloud713

albedo can change by about 20% according to how the vertical profile of the clouds frac-714

tion is represented. As we focused on the vertical structure of clouds within the plan par-715

allel approximation, we have not taken into account the solar angle or 3D radiative ef-716

fects. We computed that averaged over a whole day, the relative 3D effects on the SW717

cloud albedo are about 7% to 18% for the cases used in this study. Further work would718

be needed to link ERO with a 3D representation of clouds.719
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Appendix A Implementation and difference between ERO and Räisänen’s720

cloud generating algorithm721

For a cloudy block that extends continuously between the vertical levels [kbase, ktop]722

(with #([kbase, ktop]) = N our algorithm works as follows:723

We generate a sample of Ns subcolumns. The Ns×N different cells of this sam-724

ple are represented by the indices i ∈ [1, Ns] and k ∈ [kbase, ktop]. Starting from the725

top of each subcolumn, the algorithm computes for each cell the coefficient ci,k ∈ {0, 1},726

which corresponds to whether the cell is cloudy or not , as well as the liquid water con-727

tent.728

For the top cell of the subcolumn i, ci,ktop is computed as:729

ci,ktop =

{
0 for RN1i,ktop ≤ 1− CFktop ( clear )
1 for RN1i,ktop > 1− CFktop ( cloudy )

i ∈ [1, Ns] (A1)

where RN1 are random numbers evenly distributed on [0, 1]. Working its way down, the730

algorithm computes the next coefficients, as follows, for each cell (i, k): let RN2i,k be731

new random numbers evenly distributed on [0, 1].732

• maximum overlap: if RN2i,k < α, the cell is in maximum overlap with the
one above (i, k − 1). Its cloudy state ci,k is computed as :

ci,k = ci,k−1(1 | 1)max + (1− ci,k−1)(1 | 0)max

where (ck|ck−1)max are booleans computed according to the transition probabil-733

ities Pmax(Ck = ck | Ck−1 = ck−1) which is defined by Eq. 6 when Ck=Ck−1.734

To complete this implementation, according to Eq. (2), we also have:735

Pmax(Ck = 1 | Ck−1 = 0) = 1− Pmax(Ck = 0 | Ck−1 = 0) =
max(CFk−1, CFk)

1− CFk−1
(A2)

• random overlap: if RN2i,k > α, it’s in random overlap with the cell above.
Its cloudy state ci,k is computed as :

ci,k = (1 | 1)rand = (1 | 0)rand

where (ck|ck−1)rand are booleans computed with the transition probability Prand736

defined by Eq. (5).737

After this we have generated a cloud field with a total cloud cover of CC, with a738

standard deviation decreasing as 1/
√
Ns, and with conservation of the initial cloud frac-739

tion CFk, k ∈ [kbase, ktop].740

This algorithm is mainly based on Räisänen et al. (2004). The main difference be-741

tween those two algorithms is about the generation on random numbers. When gener-742

ating the cloud fraction (as well as the cloud condensate amout) of a given cell k, Räisänen743

generator computes xk ∈ [0, 1] to compare it to the cloud fraction of the cell CFk and744

decide wether the cell is cloudy or not. The computation to get xk is :745

xk =

{
xk−1, for RN2 k ≤ αk−1,k
RN3 k, for RN2 k > αk−1,k

(A3)

where αk−1,k is the overlap parameter between levels k and k−1, and RN2 and746

RN3 are two random numbers evenly distributed between 0 and 1.747
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In the first case, the two cells are in maximum overlap and in the second one they748

are in random overlap, a new independent random number being drawn. With only two749

levels our method is equivalent, but for more than two levels, Räisänen’s method can cre-750

ate correlation on the whole vertical subcolumn being generated, as the same random751

number can be kept for many different cells.752

By computing directly the transition probabilities to generate the cloud fraction753

of a cell (Pmax(1 | 1), Pmax(1 | 0), Prand(1 | 1), Prand(1 | 0)), and by using a different754

random number every time it is needed, we conserve the cloud fraction without creat-755

ing this correlation between the layers.756
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Figure S1. Overlap parameters (left) and decorrelation lengths (middle) for the BOMEX

simulations (hours 1 to 15), for different coarse resolutions Dz and for different reconstructions

using ERO. The daily mean value is shown. The overlap parameters are computed to match the

total cloud cover of the LES. The right panel shows the corresponding relative error in SW cloud

albedo at TOA compared to that of the LES when using those overlap parameters to generate

the scenes. For each plot, the standard deviation due to the different simulation times is shown

as an error bar.

Figure S2. Same plots for the RICO simulations (hours 1 to 15)
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Figure S3. Same plots for the SCMS simulations (hours 2 to 12)
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Figure S4. Cloud albedo (top panel), total albedo (middle panel) and total cloud cover

(lower panel) for the LES (in red), our reconstruction using ERO (in black) and a maximum

overlap reconstruction (grey). The constant decorrelation length used here both for the subgrid

computation of the surface cloud fraction profile and its interlayer overlap is Lα=202 m. The

cloud albedo of the ERO reconstruction shows a relative error of 7% on the whole day compared

to the LES cloud albedo. The scenes used are the BOMEX case (simulation hours h ∈ [1, 15]).

In all scenes the LWC is homogeneous at each vertical level.
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Figure S5. Same plots for the RICO case (simulation hours h ∈ [1, 15]) with Lα=217 m. The

cloud albedo of the ERO reconstruction shows a relative error of 6% on the whole day compared

to the LES cloud albedo.
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Figure S6. Same plots for the SCMS case (simulation hours h ∈ [2, 12]) with Lα=273 m. The

cloud albedo of the ERO reconstruction shows a relative error of 10% on the whole day compared

to the LES cloud albedo.
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