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APPENDIX A

Mathematical model of the experiment

A simple model of the device is now presented to better understand and describe the behavior of the experiment.
Each cylindrical water container is initially of mass m2. The "horizontal bar moment" is MH , and the "return moment"

is MR. Other definitions are given in the text.
At equilibrium, the sum of the moments of force is null: MH +MR = 0. Initially, as the system is vertically straight,

the moments are nulls. Given the definition of the moment of force, if the device is tilted by ∆θ compared to this initial
state, the corresponding change in the vertical bar moment is ∆MR = −ggrav l3m3 sin(∆θ), where ggrav is the gravita-
tional acceleration (absolute value). Considering that ∆θ is relatively small, this simplifies to ∆MR ≈−ggrav l3m3 ∆θ .
Therefore, at equilibrium, the tilt change ∆θ in response to any change ∆MH of the horizontal bar moment reads:

∆θ =
1

ggrav l3m3
∆MH (A1)

a. No-feedback response to an external perturbation

Adding a mass m1 to one extremity of the horizontal bar makes the device tilt by ∆θi (i for initial) (Fig. 4b) and adds
the moments ∆MH

i = ggrav l1m1 cos(∆θi), which simplifies to ∆MH
i = ggrav l1m1 when considering ∆θ small:

∆θi =
1

ggrav l3m3
∆MH

i (A2)

1) RESPONSE WITH FEEDBACK

The next step consists in opening the tap between the two containers, allowing the positive feedback process between
tilt and moment (Fig. 4c). The total variation ∆MH of the horizontal bar moment is given by:

∆MH = ∆MH
i +∆MH

f (A3)

where ∆Mi
H is the initial perturbation and ∆MH

f = ggrav l2∆m (subscript f for feedback) is the amplification due the
mass ∆m of water which has passed from the upper container to the lower one (with ∆θ small so that cos(∆θ) ≈ 1).
This mass variation is given by the difference Z = l2sin(∆θ)≈ l2∆θ between the height of the two containers:

∆m = ρS
Z
2
≈ ρS

l2∆θ

2
, (A4)

with ρ the water density, S the cross section of the containers. It follows:

∆MH = ∆MH
i +ggrav ρS

l2
2
2

∆θ (A5)

The variable MH is thus a function of θ (Eq. A5) and θ is a function of MH (Eq. A1). Combining Eqs. A1, A2 and A5,
it follows:

∆θ =
1

1−g
∆θi = k∆θi (A6)
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with

g =
ρS l2

2
2 l3m3

(A7)

and
k =

1
1−g

(A8)

where g is the feedback gain and k is the feedback amplification factor. To further understand the meaning of the gain
g, it is worth noting that Eq.A6 can also be written ∆θ = ∆θi + g∆θ , with ∆θi the no-feedback response and g∆θ the
additional response due to feedbacks.

APPENDIX B

Mathematical model of the albedo feedback

The solar flux F absorbed by the surface is
F = I(1−α), (B1)

where I is a quarter of the solar constant and α the albedo. At equilibrium, the flux absorbed by the surface is equal to
that emitted by the surface and the surface temperature is given by T = (F/σ)1/4 assuming an emissivity of 1, where σ

is the Stefan-Boltzmann constant. For small variations, this equation may be linearized and the temperature varies with
the absorbed solar flux as follows:

∆T =−∆F
λP

(B2)

With
λP =−4σT 3 (B3)

As a comparison with the experiment, T is the analog of the tilt θ of the device, F is the analog of the moment of force
MH , and Eq. B2 is the analog of Eq. A1.

a. No-feedback response to an external perturbation

The absorbed solar flux is assumed to be perturbed by ∆Q (positive or negative) by some external process. In response
to this perturbation, the surface temperature directly increases or decreases by ∆Ti according to Eq. B2:

∆Ti =−∆Q
λP

(B4)

This perturbation corresponds to adding the mass m1 and keeping the tap closed in the experiment and Eq. B4 is an
analog to Eq.A2.

b. Response with feedback

The resulting variation ∆F of the absorbed solar flux can be decomposed into a first part due the external perturbation
∆Q and a second part due to the albedo feedback amplification ∆Fα :

∆F = ∆Q+∆Fα (B5)

∆Fα depends on the surface albedo variation (Eq. B1) and may be expressed as a function of the surface temperature
∆T as:

∆Fα = λα ∆T (B6)

with

λα =−I
∂α

∂T
(B7)

where λα > 0 as the albedo α decreases when the surface temperature increases. Combining Eq.B2 and Eqs.B4 to B6,
it follows:

∆T =
1

1−gα

∆Ti (B8)
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with

gα =−λα

λP
(B9)

The feedback is positive as λα > 0 and therefore gα > 0. Equation B8 is an analog to Eq.A6 and Eq. B9 is an analog to
Eq.A7.

APPENDIX C

Experiment where the gain is doubled

Experimental device with two identical pairs of containers that communicate through two independent pipes. The
two taps can be opened one after the other to observe that the tilt increase due to two feedbacks is more than two times
the tilt increase due to one feedback.
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FIG. C1. Figure C-1: (a) General view of the device. Perturbed state with (b) the two taps closed, (c) only one tap open and (d) two taps open.
On (d), three dashed lines illustrate the tilt with the two taps closed (as in (b)), the tilt when only one tap is open (as in (c)) and the tilt that would
be if the additional tilt increase when opening the second tap was identical to the additional tilt increase when opening the first tap (blue line). The
difference between the blue line and the actual tilt illustrate that the tilt increase due to two feedbacks is more than two times the tilt increase due
to one feedback.


