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ABSTRACT

The net exchange formulation (NEF) is an alternative to the usual radiative transfer formulation. It was
proposed by two authors in 1967, but until now, this formulation has been used only in a very few cases for
atmospheric studies. The aim of this paper is to present the NEF and its main advantages and to illustrate
them in the case of planet Mars.

In the NEF, the radiative fluxes are no longer considered. The basic variables are the net exchange rates
between each pair of atmospheric layers 7, j. NEF offers a meaningful matrix representation of radiative
exchanges, allows qualification of the dominant contributions to the local heating rates, and provides a
general framework to develop approximations satisfying reciprocity of radiative transfer as well as the first
and second principles of thermodynamics. This may be very useful to develop fast radiative codes for
GCMs.

A radiative code developed along those lines is presented for a GCM of Mars. It is shown that computing
the most important optical exchange factors at each time step and the other exchange factors only a few
times a day strongly reduces the computation time without any significant precision lost. With this solution,
the computation time increases proportionally to the number N of the vertical layers and no longer
proportionally to its square N°. Some specific points, such as numerical instabilities that may appear in the
high atmosphere and errors that may be introduced if inappropriate treatments are performed when
reflection at the surface occurs, are also investigated.
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1. Introduction

In the past decades, numerical modeling of the atmo-
spheric circulation of Mars has been taking on an in-
creased importance, in particular in the framework of
the spatial exploration of the red planet (Leovy and
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Mintz 1969; Pollack et al. 1981; Hourdin et al. 1993;
Forget et al. 1998). With increased numbers of missions
to Mars and especially with the use of aero assistance
for orbit injection, there is an increasing demand for
improvements of our knowledge of Martian physics, in
particular of the Martian upper atmosphere.

Computation of radiative transfer is a key element in
the modeling of atmospheric circulation. Absorption
and emission of visible and infrared radiation are the
original forcing of atmospheric circulation. With typical
horizontal grids of a few thousands to ten thousand
points, and since we want to cover years with explicit
representation of diurnal cycle, operational radiative
codes must be extremely fast. Representation of radia-
tive transfer must therefore be drastically simplified
and parameterized.
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For Mars, the main contributors to atmospheric ra-
diation are by far carbon dioxide (which represents
about 95% of the atmospheric mass) and airborne dust
particles (even outside large planetary-scale dust-
storms, extinction of solar light by dust is several tens of
percent). Carbon dioxide is dominant at infrared fre-
quencies with a vibration-rotation line spectrum, which
must be properly accounted for.

In the development phase of the Laboratoire de
Meétéorologie Dynamique (LMD) Martian atmospheric
circulation model, a major step was the derivation of a
radiative transfer code for the CO, 15-um band (Hour-
din 1992). This model was based upon the wide-band
model approach developed by Morcrette et al. (1986)
and used in the operational model of the European
Centre for Medium-Range Weather Forecasts (Mor-
crette 1990). This model is based on a two-stream flux
formulation. Wide-band transmissivities are fitted as
Padé approximants (ratio of two polynomials) as func-
tions of integrated absorber amounts, including simple
representations of temperature and pressure dependen-
cies. For application to Martian atmosphere, the fit was
somewhat adapted in order to account for Doppler line
broadening, which becomes significant above 50 km.

Altogether, in standard configurations of the LMD
Martian model with a 25-layer vertical discretization,
infrared computations represent a significant part (up
to one-half) of the total computational cost. Similar
reports are made concerning terrestrial models. The
transmission functions being not multiplicative for band
models, the determination of radiative fluxes at each
level requires independent calculations of the contribu-
tions of all atmospheric layers. The corresponding com-
putation cost increases as the square of the number of
vertical layers. This quadratic dependency undoubtedly
represents a severe limitation when thinking of further
model refinements, in particular as far as near-surface
and high-atmosphere processes are concerned, both re-
quiring significant vertical discretization increases.
However, it is commonly recognized that, despite of
this formal difficulty, infrared radiative transfers are
dominated by a few terms such as cooling to space and
short distance exchanges (e.g., Rodgers and Walshaw
1966; Fels and Schwarzkopf 1975). In practice, the qua-
dratic dependency of absorptivity—emissivity methods
is too costly with respect to the contributions of the
various terms.

In standard flux formulations, it is difficult to quan-
tify the relative importance of the various contributions
to the local heating rates because the individual contri-
butions are not identified as such in the formalism.
Green (1967) suggested that a reformulation of radia-
tive transfers in terms of net exchanges allows quanti-
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fying the relative importance of physically distinct con-
tributions to the local heating rates and could help de-
sign more efficient models. In Green’s approach, called
here the net exchange formulation (NEF), the quantity
under consideration is directly the net energy ex-
changed between two atmospheric layers (or more gen-
erally two surfaces or gas volumes). Joseph and Bursz-
tyn (1976) attempted to use the net exchange approach
to compute radiative exchanges in the terrestrial atmo-
sphere. Despite some numerical difficulties, they
showed that radiative net exchanges between an atmo-
spheric layer and boundaries (space and ground) are
dominant although the net exchanges with the rest of
the atmosphere are not negligible as they contribute to
approximately 15% of the total energy budget. With
NEF, Bresser et al. (1995) did elaborate analytical de-
velopments for particular cases in order to compute the
radiative damping of gravity waves. The well-known
Curtis matrix (Curtis 1956; see, e.g., Goody and Yung
1989) may be related to NEF, but in the Curtis matrix
approach, one-way exchanges are considered instead of
net exchanges, which means that useful properties of
NEEF, such as the strict simultaneous satisfaction of en-
ergy conservation and reciprocity principle are aban-
doned. Fels and Schwarzkopf (1975) and Schwarzkopf
and Fels (1991) take advantage of the importance of the
cooling to space to develop an accurate and rapid long-
wave radiative code. They do not use the NEF but their
work may be easily understood in the net exchange
framework.

Similar developments were also motivated by various
engineering applications. Hottel’s method (Hottel and
Sarofim 1967), also named the zone method, is origi-
nally based on NEF. However, difficulties were en-
countered considering multiple reflection configura-
tions and the NEF symmetry was practically aban-
doned. Cherkaoui et al. (1996, 1998), Dufresne et al.
(1998), and De Lataillade et al. (2002) showed that
NEF can be used to derive efficient Monte Carlo algo-
rithms. Dufresne et al. (1999) used NEF to identify and
analyze dominating spectral ranges, emphasizing the
contrasted behavior of gas—gas and gas-surface ex-
changes. Finally, this formulation was recently used to
analyze longwave radiative exchanges on Earth with a
Monte Carlo method (Eymet et al. 2004).

In the present paper, we show how NEF can help
derive efficient operational radiative codes for circula-
tion models. This code is now operational in the general
circulation model developed jointly by Laboratoire de
Meétéorologie Dynamique and the University of Oxford
(Forget et al. 1999). As an example, this circulation
model has been used to produce a climate database for
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Mars for the European Space Agency (the database is
accessible both with a FORTRAN interface for engi-
neering and online at http://www.lmd.jussieu.fr/
mars.html; Lewis et al. 1999). In section 2, the NEF is
presented in the specific case of stratified atmospheres
and analyses are performed for typical Martian condi-
tions. Section 3 discusses the questions related to op-
erational radiative code derivations, in particular those
related to vertical integration procedures and reflec-
tions at the surface. The time-integration scheme is con-
sidered in section 4, first by investigating the numerical
instabilities that may occur in the high atmosphere,
then by finding how computer time may be saved with-
out loosing accuracy. Summary and conclusions are in
section 5.

2. Net exchange formulation

a. General approach

Longwave atmospheric radiative codes are generally
based on flux formulations. Angular integration of all
intensities at each location leads to the radiative flux
field, q the divergence of which gives the radiative
budget of an elementary volume dV, around point M as

dQ= —div(qg) dV,. @)

In an exchange formulation, the volumic radiative bud-
gets are addressed directly without explicit formulation
of the radiative intensity and radiative flux fields. Cor-
responding formulations include complex spectral and
optico-geometric integrals that may come down to (Du-
fresne et al. 1998)

40
Q= dv,, j v f av, J Ay KK (B — BYy).
0 a Tmp

@

In this expression, v is the frequency, 4 represents the
entire system (for an atmosphere, the entire atmo-
sphere plus ground and space boundaries), and Iy, p is
the space of all optical paths joining locations M and P.
For each optical path v, 7, is the spectral transmission
function along the path; By and Bj, are the spectral
blackbody intensities at the local temperatures of P and
M, and K}, is the absorption coefficient in M. The dif-
ferential dV p around location P is either an elementary
volume or an elementary surface and K5, is either the
absorption coefficient in P (if P is within the atmo-
sphere) or the directional emissivity (if P is at the
boundaries).

Expressed this way, the radiative budget of elemen-
tary volume dV,, can be seen as the difference of two
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terms: the radiative power absorbed by dV,, coming
from the whole atmosphere plus surface and space [Bp
part of Eq. (2)] minus the power emitted by dV,, to-
ward all other locations (B,, term). When separated
this way, the equation can be simplified further noticing
that the B,, part (total emission of volume dV,,) re-
duces to 4wy~ K},B}, dv. This approach is the current
basis for engineering zone method and Curtis matrix
(see, e.g., Goody and Yung 1989).

In NEF, Eq. (2) is rather interpreted keeping the
formal symmetry as the sum of the individual net ex-
changes between volume dV,, and all other elementary
volumes or surfaces (including space in the case of an
atmosphere). An individual spectral net exchange rate
between dV,, and dVp,

WAV, dVy) = dVyy dV, f dyT KK (B} = Bi),

Tmp

3)
is just the power emitted by dV and absorbed by dV,,
minus that emitted by dV;, and absorbed by dV . For a
discretized atmosphere, the spectral net exchange rate
between two meshes i and j reads

‘JJZ]‘: f f _l[/”(dVM, dVp), 4)

where 4; and 4; are the volumes or surfaces of meshes
i and j. The spectral radiative budget ¢s; of mesh i is the
sum of the net exchange rates between i and all other
meshes j:

=0 5)
J

A very specific feature of this formulation lies in the
fact that both the reciprocity principle, the energy con-
servation principle and the second thermodynamic
principle may be strictly satisfied whatever the level of
approximation is retained to solve Eqs. (3) and (4). The
reciprocity principle states that the light path does not
depend on the direction in which light propagates,
which means that the integrals of the optical transmis-
sion 7 over both the optical path space I'y, » and over
the reciprocal space I'p , are the same:

j dyt,= f dyt,, (6)
Tmp T'p.m

Using Eq. (3), the reciprocity principle reduces to
U'(dVy, dVp) = —"(dVp, dV,,). This condition may
be satisfied provided that the same computation is used
for both ¢*(dV,,, dVp) and —{"(dVp, dV,,). In other
words, when photons emitted by dV,, and absorbed by
dVp are counted as an energy loss for volume dV,,, the
same approximate energy amount is counted as an en-
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ergy gain for dVp. As a direct consequence, the energy
conservation principle is also satisfied. Finally, pro-
vided that the difference (B} — B},) that appears as
such inside the optical path integral is preserved, Eq.
(3) ensures that warmer regions heat colder regions in
accordance with the second thermodynamic principle.

Altogether, the NEF allows the derivation of ap-
proximate numerical schemes strictly satisfy the reci-
procity principle, the energy conservation principle,
and the second thermodynamic principle. Any approxi-
mation may be retained for the integration over the
optical path domain without any risk of inducing arti-
ficial global energy sources or nonphysical energy re-
distributions.

b. Application to the CO, 15-um band in the
Martian context

After these general considerations, we illustrate the
net exchange approach in the case of the CO, 15-um
band on Mars. At this first stage, we make the following
simplifying assumptions:

» the atmosphere is perfectly stratified along the hori-
zontal (plan parallel assumption),

o the surface is treated as a blackbody (emissivity € =
1), and

e the atmosphere is assumed dust free.

Under these assumptions, the space of relevant optical
paths reduces to straight lines between exchange posi-
tions. Dividing the atmosphere into N layers, spectral
net exchange iy/; between layer i and layer j can be
derived from Egs. (3) and (4) as

Ziv12) [Zj+ar) [((7/2)
o[
Zi—ar) J Zj-an) JO
— B2)k"(z,)p(z)k"(z))p(z))

[ J’ 4 k"(2)p(2)
exp| — —
(7)

coso
where Z;_ 5y and Z,, (15 are the altitudes at the lower
and higher boundaries of atmospheric layer i, p is the
gas density, k" is the spectral absorption coefficient, and
60 is the zenith angle. The previous equation may be
rewritten as

Zi+(1/2) ;+<1/2)
l‘pl i - B;},)
Zi—-(12) J Zj- (1/2)
8)

where Y" is the spectral integrated transmission func-
tion defined as

dz

] tan do dz; dz,,

<i

aZYV(Zi, Z,')
6Zi82j

dz; dz;,
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(71/2)
Y"(z,2') = f

ool -| [
&)

With the same assumptions, the spectral net exchange
rate s/, between layer i and ground or space can be
derived from Eq. (3) as

kV(x)p(x)
cosO

i| sin6 cos d6.

Ziv(12) [ (7/2)
Yip = f J 2[B(T}) — BZ Jk"(z)p(z,)
0

—(172)
o -

with 7}, = T, for exchanges with the planetary surface
(at temperature 7,) and 7, = 0 K for cooling to space.
This equation may be rewritten as

J’ @ k"(z)p(2)

cosf

dz H sin6 d6 dz;,

2i

(10)

aYV(Zl-, Zb)
0z

i

i

Zi+(12)
Yip = J’ [B*(T,) — B ]
Zi—(172)

(11)

This last equation is well known as it is commonly used
to compute the cooling to space.

In practice, net exchange computations require an-
gular, spectral, and vertical integrations. In the present
study, the following choices are made.

1) As in most GCM radiative codes, the angular inte-
gration is computed by applying the diffusive ap-
proximation, which consists in the use of a mean
angle 0 (1/cos® = 1.66, see Elsasser 1942).

2) As in the original Martian model, the spectral inte-
gration is replaced by a band model approach in
which the Planck functions and wide-band transmis-
sivities are separated (Morcrette et al. 1986; Hour-
din 1992).!

3) The vertical integration is what we concentrate on in
section 3 with various levels of approximation.

! This approach is exact for a spectral interval narrow enough to
use a constant value of the Planck function. For larger intervals,
temperature variations affect the correlation between the gas ab-
sorption spectrum and the Planck function. Following Morcrette
et al. (1986), this effect was accounted for in the original model by
using different sets of fitting parameters for the transmission func-
tion depending upon the temperature of the emitting layers. Here,
we only use one set of parameters and control tests indicated that
this simplification has a negligible effect on the estimated radia-
tive heat sources.
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With the diffusive approximation and the use of wide-
band transmitivities, the net exchange y;; becomes, af-
ter spectral integration of Eq. (8) over wide bands m,

Ziv12) [ Zj+1r)
Vi = >
Zi—1r2) Y Zj—an) m

with

(B~ BIVE Av,, dz, dz,

(12)

I i C )
gZ,‘, Zj -

aZiaZj

, (13)

where 77(z;, z;) is the wide-band transmissivity be-
tween z; and z; with a mean angle 6 and Av,, is the
bandwidth.

The net exchange is;;, between layer i and boundary
b (ground or space) becomes, after spectral integration
of Eq. (11),

Zi+(1/2) o -
Wi = > [B™(T,) — BE™ . Av,, dz,
Zi—(172) m
(14)
with
_— a7"(255 2)
A e (15)

Finally the net exchange ¢, , between the ground sur-
face s and space e becomes

oo = >, — B(TYE" . Av,, (16)
with
£ =72, 2,) (17)

¢. Reference case

We first present a computation of net exchanges on a
typical 25-layer GCM grid (Table 1), with refined dis-
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cretization near the surface. To avoid problems with
the vertical integration for this reference computation,
exchanges are first computed on an overdiscretized grid
of 500 layers (Fig. 1), each layer of the coarse GCM grid
corresponding exactly to 20 layers of the 500-layer grid.
An exchange between two atmospheric layers of the
coarse grid is simply obtained as the sum of the 20 X 20
exchanges from the finer grid.

We use a reference temperature profile (Fig. 1) de-
rived from the measurement taken by two Viking
probes during their entry in the Martian atmosphere
(Seiff 1982) and already used by Hourdin (1992). In the
upper atmosphere, there is no systematic temperature
increase, as there is no significant solar radiation ab-
sorption equivalent to that the ozone layer on Earth. In
the middle atmosphere, gravity waves and thermal tides
disrupt the temperature profile. Near the surface, the
quasi-isothermal part of this averaged profile hides a
strong diurnal cycle. The surface pressure is fixed to 700 Pa.

d. Net exchange matrix

NEF offers a meaningful matrix representation of
radiative exchanges. A graphical example of such a ma-
trix is shown in Fig. 2. Each element displays the net
exchange rate y;; for a given pair i, j of meshes con-
verted in terms of heating rate:

g 1

Xi,j = Cp 8[ 517, ) (18)

where g is the gravity, Cp the gas mass heat capacity,
and &¢ the length of the Martian day (8¢t = 88775 s). For
the ground, the heating rate is arbitrary computed using
a thermal capacitance of 1 J K~! m~? day'. The total
heating rate of a layer i is

Xi = 2 Xijs
j

where y; ; and y;, are of opposite sign but the exchange
matrices expressed in K day ! are not antisymmetric as

(19)

TABLE 1. Low-resolution (i.e., 25 layers) vertical grid characteristics: layer number, o levels (o = P/P,, with P the surface
pressure), and approximate corresponding heights.

Layer No. o Approx height (m) Layer No. o Approx height (km) Layer No. o Approx height (km)

1 0.99991 3.6 10 0.9251 3.030 19 0.3256 43.69
2 0.99958 16.4 11 0.8787 5.037 20 0.2783 49.80
3 0.99898 39.8 12 0.8157 7.934 21 0.2359 56.24
4 0.99789 82.1 13 0.7403 11.70 22 0.1975 63.15
5 0.99592 159.0 14 0.6597 16.19 23 0.1613 71.04
6 0.99238 297.9 15 0.5803 21.19 24 0.1275 80.21
7 0.98605 547.0 16 0.5061 26.52 25 0.0842 96.35
8 0.97494 988.4 17 0.4388 32.07

9 0.95598 1753 18 0.3788 37.80
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F1G. 1. Temperature vertical profile (K, bottom axis, continuous
line) with 500 layers (thin line) and 25 layers (bullet, thick line).
Each temperature of the 25-layer grid is the mean of 20 layers of
the high-resolution grid (finite volume representation). The ref-

erence heating rate (K day™!, top axis, dotted line) is also dis-
played for the two grids.

they would be if expressed in W m~2 (¢ri,j = —y; but
Xij * _Xj,i)'

1) MATRIX CHARACTERISTICS

As an example of reading Fig. 2, consider layer i = 10
(marked in the figure). The temperature profile and the
total heating rate y; are also plotted on both sides. The
horizontal line of the matrix shows the decomposition
of the heating rate in terms of net exchange contribu-
tions [see Eq. (19)]. This partitioning of the heating
rates first emphasizes some well-established physical
pictures. The cooling to space is the dominant part of
the heating rate: it essentially defines the general form
and the order of magnitude of the heating rate vertical
profile. This well-known property has been widely used
to derive approximate solutions in atmospheric context
(e.g., Rodgers and Walshaw 1966; Fels and Schwarz-
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kopf 1975; Schwarzkopf and Fels 1991). Internal ex-
changes within the atmosphere are by far dominated by
the exchanges with adjacent layers (note that there is a
factor of ~3 between two consecutive colors). As a
consequence, the net exchange matrix is very sparse. A
very few terms dominate all the others. These impor-
tant terms are the exchanges with boundaries (space
and surface) and the exchanges with adjacent layers.
Thanks to the NEF, the relative magnitude of these
terms can be quantified.

2) THERMAL ASPECTS

In each spectral band, each contribution x;"; to the
total net exchange rate y; ; is the integral of the product
of two terms: the blackbody intensity difference be-
tween z; and z; and the optical exchange factor 7;’;@
[e.g., Eq. (12)]. The sign of the net exchange rate x;;
only depends on the temperature difference between i
and j as the optical exchange factor E”Z‘Z! is always posi-
tive. Layer i heats layer j only if its temperature 7; is
greater than 7). The direct influence of the temperature
profile on the exchange matrix can be seen on Fig. 2.
For instance layer 10 is heated by the warmer underly-
ing atmosphere and surface and looses energy toward
the colder layers above and toward space. The picture
is more complex in the upper atmosphere where strong
temperature variations are generated by atmospheric
waves. In this region, a layer can be heated by both
adjacent warmer layers (e.g., layer 20). In particular
these radiative exchange between adjacent layers are
known to damp the possible temperature oscillations
due to atmospheric waves (Bresser et al. 1995).

Finally, the gas radiative properties depend much
less on the temperature than the blackbody intensity.
Therefore the metric of optical exchange factors & may
be assumed as constant for qualitative exchange analy-
sis, and even to some extent for practical computations
as discussed later on.

3) SPECTRAL ASPECTS

The exchange factors £ between two meshes are pro-
portional to the gas transmission 7 for the exchange
between surface and space [Eq. (17)], proportional to
the first derivative of 7 for the exchanges between a
layer and surface or space [Eq. (15)] and proportional
to the second derivative of 7 for the exchanges between
two atmospheric layers [Eq. (13)]. The behavior of op-
tical exchange factors can be understood by analyzing
these three functions. To allow comparison, we normal-
ize them by the product of the emissivity at both ex-
tremities. If the extremity i is a gas layer of differential
thickness dz;, the emissivity is
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2
i 4
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130 220 30 a0 10 1] i

Temperature Profile (K)

Net Exchange Mairix (K/day)

Heating Rate (K/day)

FI1G. 2. Graphical representation of radiative net exchange rates in the Martian atmosphere: (left) temperature
profile, (middle) net exchange matrix, and (right) heating rate. The vertical axis is the layer number. Same

conditions as in Fig. 1.

If the extremity i is ground or space, €;" = 1. We also
use a normalized integrated mass X of atmosphere

X@) =5 f p(z') dz', 1)

where P, is the ground pressure.

The wide-band model used in this study has two spec-
tral bands chosen empirically (Hourdin 1992). The first
one (band 1), ranging from 635 to 705 cm™!, corre-
sponds to the central part of the CO, 15-um band. The
second one (band 2), ranging from 500 to 635 cm ™' and
from 705 to 865 cm ' corresponds to the wings. The
three normalized functions, 7, 1/€, 97/0X and 1/(€;, €;)
8*7/0X?, that may also be seen as normalized exchange
factors, are displayed in Fig. 3 for the two bands. The
three normalized exchange factors go to 1 when X goes
to 0. Indeed, when the two extremities are adjacent, the
exchange factor is the product of the emissivity at both
extremities.”

When X increases, the normalized exchange factor
slowly decreases (in particular for band 2) if the two

2 This is only true in the limit where the gas layer(s) is (are)
optically thin. In the example presented here, the emissivities are
computed for layers with a normalized thickness AX = 0.01.

extremities are black surfaces (here space and ground);
it decreases faster if one extremity is a gas layer and
decreases even faster if the two extremities are gas lay-
ers (Fig. 3). This is an illustration of the so-called spec-
tral correlation effect (e.g., Zhang et al. 1988; Modest
1992; Dufresne et al. 1999). For the exchange between

Band #1 (center)

10°
107 3 T
;‘\\ i i
107 . T~
10-® , ; . . e . .
0.1 02 03 04 05 06 07 08 09 1
10° Band #2 (wings)
\-.\
107 s e
10~ e ST
= e
~
10-° .

01 02 03 04 05 08 07 08 09 1

Fi1G. 3. Gas transmission 7 (solid) and its two first derivatives
normalized by the emissivity € of the gas layer, (1/€)|67/0.X] (dash)
and (1/€%)|92/0X?| (dot), as a function of the normalized integrated
mass of atmosphere X = (P — P,)/P,, for (upper) the central part
(band 1) and (lower) the wings part (band 2) of the CO, 15-pm
band. The atmospheric temperature is assumed uniform (7" = 200
K) and the surface pressure is P, = 700 Pa.
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FiG. 4. Graphical representation of the net exchange matrix for spectral bands (left) 1 and (middle) 2. Same
conditions as in Fig. 2. On the right side, the total heating rate is shown for band 1 (black squares), for band 2

(crosses), and over the whole spectrum (open circles).

two gas layers, both absorption and emission are at a
maximum in spectral regions near the center of the
absorbing lines. But exactly at the same frequencies gas
absorption creates a strong decrease of the transmission
when the distance between extremities increases. Thus
the exchange strongly decreases with distance. On the
contrary, the exchange between ground and space is
most important in spectral regions where the spectral
transmission is high, that is where the gas absorption is
low. Thus the exchange factor between ground and
space is much less sensitive to the integrated air mass
between them. Exchange between a layer and ground
or space is an intermediate case.

When X increases, the decrease of the three normal-
ized exchange factors is faster for the central part of the
CO, band (band 1) than for the wings (band 2) (Fig. 3).
As a consequence, the decrease with distance of the
exchange between two atmospheric layers is more im-
portant in band 1 (left panel of Fig. 4) than in band 2
(right panel of Fig. 4). The exchanges between adjacent
layers are much greater for band 1 than for band 2,
whereas distant exchanges have the same magnitude
for the two bands. For the cooling to space, the com-
petition between the decrease of |97/0.X| and the in-
crease of the local blackbody intensity yields noticeably
different vertical profiles: The absolute value of the
cooling to space decreases when the layer is closer to
the surface for band 1 whereas it increases for band 2.

3. Vertical integration

In the above reference computation, net exchanges
have been computed using given subgrid scale tempera-

ture profiles (Fig. 1). In practice, with circulation mod-
els, only mean temperatures are known for each layer®
and assumptions are required concerning subgrid scale
profiles. First, we present the very simple assumption of
a uniform temperature within each atmospheric layer.
This allows us to highlight the link between NEF and
flux formulations. Then we address the more general
case of nonisothermal layers and finally we highlight
the modifications that are required in the case of a
reflective surface.

a. Isothermal layers

For isothermal layers, the individual exchanges con-
tributing to the radiative budget of layer i (; = Z;;;;)
take a simple form [Eqgs. (12) and (13)], reducing to

b, = >, MBI — B, (22)

with

em o =m —m m
glj = 1Tivan, -2 = Tie@2),j—12) ~ Tit12),j+012)

+ ?:"1(1/2),,4(1/2) I (23)
In the equivalent flux formulation, the individual con-
tributions of the radiation emitted by layer i to the flux
at interface j + %

3 We assume that circulation models make use of finite volume
representations and that GCM outputs are representative of mean
temperatures rather than midlayer temperatures.
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Fiivan = E B;n(}ﬁ(l/Z),jJr(l/Z) - ?7:(1/2),j+(1/2))
m
(24)

are first summed over i to compute the radiative flux
F;,!ateach interface j + % The radiative budget of each
layer j then reads

djj = Fj—(1/2) - Fj+(1/2)

= E Fii—an — E Fiivan:
z l

(25)

An exact equivalence between the net exchange and
flux formulations is obtained by noting that

lvl’i,j = |Fj—>i+(1/2) - Fj—>i—(1/2)| - IFi—>j+(1/2) - Fi—>j—(l/2)|
(26)

and using the property 7; ; = ;.

For developing a radiative code, NEF however pre-
sents advantages. With flux formulation, fluxes are first
integrated over altitude z and then differentiated.
When temperature contrasts are weak (here near the
surface for instance), net exchange rates can be by or-
ders of magnitude smaller than fluxes. Computing first
the fluxes and then the differences may lead to strong
accuracy loss, which we observed could induce reci-
procity principle violations (colder layers heating
warmer layers for instance).*

In Fig. 5, we show the error on net exchanges if the
isothermal approach is retained for all exchanges with
respect to the reference 500-layer simulation. The error
is very large around the diagonal and often larger than
the exchange itself. Indeed, at frequencies where sig-
nificant CO, emission occurs (close to absorption lines
centers) the atmosphere is extremely opaque, which
means that most emitted photons have very short path
lengths compared to layer thicknesses. Consequently,
exchanges between adjacent layers are mainly due to
photon exchanged in the immediate vicinity of the layer
interface. In this thin region, temperature contrasts are
much weaker than the differences between mean layer
temperatures. The isothermal approximation thus re-
sults in a strong overestimation of the net exchanges.

The relative error due to the isothermal hypothesis
strongly decreases with distance between layers. This
feature is further commented in appendix.

4 This problem may be partially overcome in the flux formula-
tion by introducing the blackbody differential fluxes F = 7B — F
(e.g., Ritter and Geleyn 1992).
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FIG. 5. Error matrix with the isothermal layer assumption. Line
i column j gives the error in K day ! for the heating rate of layer
i due to its exchange with layer j. The error is computed with
respect to the reference computation performed with 20 sublayers
inside each layer. Other conditions are the same as in Fig. 2.

b. Net exchanges between adjacent layers

The specific difficulty of exchange estimations in the
case of adjacent layers is commonly identified and so-
lutions have been implemented in flux computation al-
gorithms (e.g., Morcrette et al. 1986). In most GCMs,
only the average layer temperatures and compositions
are available. Here a linear approximation is retained
for B to describe the atmosphere close to the mesh
interface. Because of the symmetry of Eq. (8) in z; and
z;, the linear approximation is strictly equivalent to a
quadratic approximation in the limit case of two layers
of identical thicknesses (see the appendix). When com-
puting ;. we therefore assume that B(z) is linear
between z; ,,, and z,,3,, satisfying the following con-
straints for j = i £ 1 (Fig. 6):

Zj+1/2
f B(z) dz = BAz;. (27

Zj-172

Note that in this approach, the assumed temperature
profile inside a layer is different when computing the
exchange with the layer just above or just below.
With this assumption, exact integration procedures
could be designed, for instance, using the analytical so-
lution available for the best fitted Malkmus transmis-
sion function (Dufresne et al. 1999), or integrating by
parts and tabulating integrated transmission function
from line by line computations. Here we test a more
basic solution by dividing the linear profile into isother-
mal sublayers, with thinner sublayers closer to the in-
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i—1 0 FIG. 7. Vertical profile of the heating rate error in K day ™! due
/ to the (left) vertical integration scheme, and part of this error due
to the computation of the net exchange with (middle) adjacent
layers (black circles) and distant layers (open circles), and (right)
B ground (black circles) and space (open circles). The error is com-

F1G. 6. A linear blackbody intensity profile approximation is
used for computation of the net exchanges between adjacent lay-
ers. The blackbody intensity profile inside a layer is different
when computing the exchange with the layer just above (black
line) or just below (gray line). The subgrid discretization is also
shown (thin lines).

terface (Fig. 6). The subdiscretization scheme was
tested against reference simulations. For the present
application, a satisfactory accuracy is reached with a
subdiscretization into three isothermal sublayers of in-
creasing thicknesses (Az/7, 2Az/7, and 4Az/7) away
from the interface.

Whatever the integration procedure, a direct conse-
quence of the previous linear blackbody intensity as-
sumption is that the net exchange between two adjacent
layers may be still written formally like the net ex-
change between isothermal layers [Eq. (22)]. Only the
expression of the exchange coefficient /7., depends on
the temperature profile hypothesis.

We finally adopt the following solution for the ver-
tical integration: the above subdiscretization into three
isothermal sublayers is used to compute the radiative
exchanges between adjacent layers whereas the simple
isothermal layer assumption is used to compute the ex-
change between distant layers. For the exchange be-
tween ground and first layer, we assume the tempera-
ture of gas just above the surface to be 7, = (T, + T;)/2
and a linear B profile between 7, and 7,. An isother-
mal description is retained for the exchange between
the optically thin upper layer and space. The global
error due to the vertical integration scheme, as well as
the origin of the error, are displayed Fig. 7. The ana-
lytical expression of these errors is presented in an ap-

puted with respect to the reference computation performed with
20 sublayers inside each layer. Other conditions are the same as in
Fig. 2. The vertical axis is the layer number.

pendix for some cases. One should have in mind that
results are compared with a high-resolution vertical
grid where the temperature profile has a more precise
description than in the low resolution grid.

c. Exchanges with reflection at the surface

The above presentation assumes that the surface be-
haves as a blackbody. In practice, surface emissivity can
differ from 1. The mean emissivity of the Martian sur-
face is believed to be of the order of 0.95 (Santee and
Crisp 1993), and emissivity is believed to be lower in
some regions (Forget et al. 1995).

When reflection at the surface is present, two atmo-
spheric layers can exchange photons, either directly, or
through reflection at the surface. For instance, the net
exchange between two atmospheric layers i and j [Eq.
(12)] becomes

Zi+(1/2)
‘lfi,j =
Zi—(172)

+ E;n(zh Zj)] dz; dea

Zj+(1/2) _ L
> (B2~ BIIE(z,2)

Zj—172) m

(28)

where &7 is the optical exchange factor for direct ex-
changes

P7(2; 2)

2
92;0Z; @9)

Ezinz) =
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FiG. 8. (left) Vertical profile of the heating rate when the surface is perfectly black (cross, continuous line) and
when the surface has an emissivity e, = 0.9, the computation being either exact (circle, dash line) or neglecting
spectral correlation when reflection at the surface occurs (square, dotted line). Same atmospheric conditions as in
Fig. 1. The vertical axis is the layer number. (right) Same as left, but with a perfectly reflecting surface (g, = 0).

and &7 the optical exchange factor through reflection at
the surface:

32K(1i7 Zj)

30
az,0z; | (30)

&(z,, Zj) =(1-¢€)

where € is the surface emissivity and I'y(z;, z;) is the
transmission function from z; to z; via the surface for a
spectral interval. Assuming the diffusive approxima-
tion, this transmission writes

Tz 2) = J [7"(z;, 0)7(0, z;)] dv. (31)

In the original flux formulation, as well as in other ra-
diative codes based on the so-called absorbtivity/
emissivity method, the downward flux is first integrated
from the top of the atmosphere to the surface. The
reflected part of this downward flux is then added to
the flux emitted by the gray surface. This flux is then
used as a limit condition to integrate the upward flux up
to the atmospheric top. This assumption corresponds to
the following approximation:

Iz, zj) = 7(z,;, 0)7(0, z;), (32)
which is wrong for wide and narrow band models be-
cause the spectral information is forgotten at the sur-
face. The error on the heating rate is particularly strong
for the layers near the surface. For a surface emissivity
of 0.9, as expected, the exact solution displays small
changes in the heating rate compare to the case where
the surface is black (plus signs and circles in the left on
Fig. 8). On the other side, the computation that neglects
the spectral correlation at the surface (squares) displays
a very large and unrealistic change of the heating rate
near the surface.

A useful property can be used to check the results
with a reflective surface. Let us consider an atmosphere
with a thin layer near the surface having the same tem-
perature as the surface itself. This layer will never ex-
change energy with the surface because both are at the
same temperature. If the surface emissivity differs
from 1, the exchange of this layer with the atmosphere
above and with the space will be increased through
reflection at the surface. For an optically thin layer
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and for a perfect mirror (¢ = 0) all those exchanges,
and hence the radiative cooling, will be exactly twice
that without reflection (¢ = 1) (Cherkaoui et al.
1998). The net exchange computation fulfills this
property (plus signs and circles on the right-hand
side of Fig. 8) but the original flux model does not
(square).

The above computations were performed with a pre-
scribed vertical temperature profile. To evaluate the
error associated to incorrect treatment of reflection
when all the physical processes (radiation, turbulent
vertical mixing . . .) are active, we present hereafter re-
sults obtained with a 1D model that corresponds to a
single vertical column of the 3D GCM.

When the temperature profile is prescribed, a de-
crease of the surface emissivity reduces the cooling of
the surface but increases the cooling of the atmosphere
above (Fig. 8). With the full 1D model, a decrease of
the surface emissivity reduces the cooling of the sur-
face, which increases its temperature (Fig. 9). The tem-
perature of the atmosphere above also increases, but
less, as the decrease of emissivity increases the cooling
of the atmosphere.

When the temperature profile is prescribed, we pre-
viously noticed that neglecting the spectral correlation
at the surface leads to strongly overestimate the atmo-
spheric cooling just above the reflective surface (Fig. 8).
With the 1D model, neglecting the spectral correla-
tion leads to underestimate by a factor of 0.5-0.7 the
temperature increase in the boundary layer due to
the emissivity decrease (Fig. 9). This underestimate
is even more important if the turbulent vertical mixing
is neglected (not shown). Neglecting the spectral
correlation also slightly increases the diurnal cycle of
the atmospheric temperature near the surface (not
shown).

d. Computing vertical fluxes

In a general way there is no direct relationship be-
tween upward and downward fluxes and net exchanges.
Only the net radiative fluxes may be directly expressed
as a function of net exchanges. For instance, the net
fluxes at the top of atmosphere Fy ., reads

(33)

N
N+ 1/2) E N+1,k

(34)

\Ib”42

m nm
2 2 Bl
m

where N is the number of vertical layers, k = 0 stands
for ground, and k = N + 1 stands for space.
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Temperature diff.

(X)

F1G. 9. Vertical profile of the daily mean temperature difference
due to a change in the surface reflectivity with an exact compu-
tation (open circle) and neglecting spectral correlation at the sur-
face (closed circle). The temperatures of a run with a slightly
reflective surface (g, = 0.9) are compared to a run with a nonre-
flective surface (e, = 1). The runs are 10 days long, have the same
initial state, and are performed with the single-column version of
the Martian GCM. Diurnally averaged temperature differences
are plotted for the last day. The vertical axis is the atmospheric
layer number.

The optical exchange factors £ present in Eq. (34) are
comparable to the so-called weighting functions used to
invert satellite radiative measurements. Therefore NEF
should be a useful framework to assimilate those mea-
surements in GCMs.

In the atmosphere, the net flux at level i + % is equal
to the net exchange between all the meshes below i +
% and all the meshes above i + %z

N+1 i

Z Ed’/k

j=it+1 k=0

(35)

1+(1/2)

If one really wants the values of the upward and down-
ward fluxes, one may be approximated assuming each
atmospheric layer is isothermal. If the optical exchange
factors & have been computed with this assumption, the
upward flux at level i + %is equal to the flux emitted by
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all the meshes below i+ and absorbed by all the
meshes above i + =

i N+1

Fi++(l/2) = E E éj,kgj'

=0 k=i+1

(36)

Note that the errors on fluxes arising from the isother-
mal hypothesis are much smaller than the error on net
exchanges between adjacent layers due to the same hy-
pothesis. The same way, the downward flux at level
i+ % is equal to the flux emitted by all the meshes above
i+ % and absorbed by all the meshes below i + %:

i N+1

=> > &.B.

j=0 k=i+1

(37)

1+(1Q)

4. Time integration

a. Numerical instabilities in the high atmosphere

When the atmospheric vertical resolution increases,
numerical instabilities appear in the Martian GCM in
the high atmosphere and they may increase dramati-
cally. This problem has also been encountered in some
GCM of the Earth atmosphere and specific stabiliza-
tion techniques are commonly used to bypass this dif-
ficulty. Here we analyze the reasons of this difficulty
and we propose a solution that takes advantage of the
NEF.

In the original Martian model, the radiative transfer
is integrated with an explicit time scheme, the evolution
between times ¢ and ¢ + &t of the temperature of layer
i being computed from a computation of the heating
rate y; = 2.£,(B; — Bj) at time ¢ as

¢§8t
m.C. -

r=p

TH—S[ Tt (38)
In the upper atmosphere, the mass m; of the atmo-
spheric layers becomes very low, reducing they thermal
capacitance. As a consequence, strong numerical oscil-
lations appear for large time steps if the variations of iy,
with temperature, within the time step, are not taken
into account.

A well-known solution to this problem consists in
replacing ¢’ in Eq. (38) by ¢ = (1 — a){! + aghtt®.
With those notations, the temporal scheme covers the
cases of explicit (« = 0), implicit (« = 1) and semi-
implicit (a« = 1/2) schemes. For @ # 0, the scheme is no
more explicit and requires an inversion procedure. The
net exchange formalism offers a simple practical solu-
tion to this problem. Based on the analysis above, it can
be assumed that only the blackbody emissions B; vary
during the time step while the optical coefficients do
not. Also it can be assumed that only the exchanges
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with adjacent layers (i = 1) and boundaries (b) vary
while the exchanges with distant layers are unmodified.
With these approximations, and after linearization of
the Planck function,

PO =yita D &

j=i*=1,b

[ | (Tt+6t /t)

— (39)

L Tf)].
If in addition we do not consider the variation of 7,
within the time step (which is exact for space and not a
problem for the surface when computing the heating
rates in the upper atmosphere), the temperature at time
t + &t is obtained from that at time ¢ through the inver-
sion of a tridiagonal matrix, for a low computational
cost.

This approach, implemented in the Martian GCM
with o = 1/2, is very efficient and suppresses all the
numerical oscillations in the upper atmosphere.

b. Saving computer time

The computation cost of the LW radiative code is
known to be very important in most GCMs. Solutions
have been proposed and implemented to reduce this
computation time. Generally the full radiative code is
computed only one out of N time steps, and approxi-
mations are used to interpolate the LW cooling rates
between those N time steps. The simplest time interpo-
lation scheme is to maintain constant the cooling rates
during this period. This is the case in the original Mar-
tian GCM where the radiative code is computed one
out of two time steps (each 1 h).

On Mars, the surface temperature diurnal cycle is as
high as 100 K and the time interpolation method has to
reproduce the effects of this diurnal cycle. The NEF
provides an easy answer to this problem. Since the
Planck function dominates the variations of the radia-
tive exchanges, the Planck function will be computed
at each time step while computing the optical factors
Ei,i only one out of N time steps. A second level of
optimization consists in computing the optical exchange
factors corresponding to the most important exchange
rates (see section 2d) more frequently than the others.
Once again, the NEF ensures that the above appro-
ximation will not alter the energy conservation and
the reciprocity principle (section 2a). Practically all
the optical exchange factors are scattered in three
groups: the exchange factors between each atmospheric
layer i and 1) its adjacent atmospheric layers, 2)
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the distant atmospheric layers (i.e., the other atmo-
spheric layer), and 3) the boundaries (i.e., surface and
space).

We present numerical tests performed using the
single column version of our GCM. The runs last 50
days and the comparison between runs is performed
using the results of the two last days. For these two
days, we computed the atmospheric temperature differ-
ence between each run and the reference run. The
mean and the rms of this difference allows a quick com-
parison between them (Table 2). In the reference run
(case 1), the full LW code is called at each time step of
the physics, that is, every 30 Martian minutes). Case 2
corresponds to what was implemented in the original
version of our GCM: the full LW code is called one out
of two time steps of the physic—that is, every Martian
hour—and the LW cooling rates are constant during
this period. Computing all the optical exchange factors
only once a day (case 3) leads to an error only slightly
greater than computing all the LW radiative code one
out of two time steps (case 2), but requires a much
smaller CPU time. This result illustrates that the diur-
nal variations of the optical exchange factors are not
very important compared to the diurnal variations of
the Planck function.

As mentioned above, one may compute the most im-
portant exchange factors more frequency than the
other. Computing the optical exchange factors with
boundaries at each time step highly reduces the error
while it only slightly increases the computation time
(case 4). Computing the exchange factors with adjacent
layers at each time step slightly reduces the error while
strongly increasing the computation time (case 5).

Computing exchange factors only once a day may
introduce a significant bias for long-term simulations as
the diurnal cycle is very badly sampled. We choose to
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compute all the exchange factors at least four times a
day (cases 7-10). Computing the exchange factors with
boundaries at each time step (30") and the other ex-
change factors every 6 h (case 8) produces much
smaller errors than the original solution (case 2) while
being two times less consuming. Another important ad-
vantage of this solution is that the number of exchange
factors with boundaries increases linearly with the num-
ber N of vertical layers. The number of the other ex-
change factors are still proportional to N* but they are
computed much less frequently and the required com-
putation time is therefore negligible: the CPU time will
increase almost linearly with N and no more as a func-
tion of N? as for all the absorptivity—emissivity meth-
ods.

If higher accuracy levels are required, a more fre-
quent computation of the exchanges factors with both
the boundaries and the adjacent layers is a good solu-
tion (case 10). The errors are negligible and the com-
putation time is divided by a factor of 2 compared to
the reference solution (case 1).

5. Summary and conclusions

In the present paper, a radiative code based on a flux
formulation has been reformulated into a radiative
code based on the NEF. This formulation has been
proposed by Green (1967) but has not been often used
since this time.

The graphical representation of the net exchange ma-
trix appears to be a meaningful tool to analyze the ra-
diative exchanges and the radiative budgets in the at-
mosphere. In the case of Mars, the exchange between a
layer and space (the cooling to space) and the ex-
changes between a layer and its two adjacent layers are
by far the dominant contributions to the radiative bud-

TABLE 2. Comparison between the various time interpolation schemes.

Computation period

Exchange factors

Atm temperature difference (K)

Case Net exchanges and  Adjacent Distant Normalized computation time
No. radiative budgets layers Boundaries  layers Mean Rms of the LW radiative code
1 30 30 30 30’ 0.00 0.00 1.00
2 1h 1h 1h 1h —0.10 0.38 0.50
3 30 1 day 1 day 1 day 0.32 0.38 0.15
4 30 1 day 30 1 day —0.08 0.16 0.21
5 30 30 1 day 1 day 0.27 0.33 0.46
6 30 30 30" 1 day —0.10 0.13 0.54
7 30 6h 6h 6h 0.21 0.20 0.16
8 30 6h 307 6h 0.01 0.05 0.25
9 30 30 6h 6h 0.18 0.20 0.47
10 30 30 30’ 6h —0.01 0.02 0.52
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gets. The exchange with space explains the general
trend of the radiative budget with altitude. The ex-
changes with adjacent layers play a key role as they
dump the temperature oscillations due to the various
atmospheric waves.

A key point of the NEF is that it ensures both the
energy conservation and the reciprocity principle what-
ever the errors or approximations are made when com-
puting the optical exchange factors.

The net exchange between meshes is equal to the
product of an optical exchange factors and the Planck
function difference between the two meshes. This al-
lows one to analyze separately the role of the optical
properties of the atmosphere and the role of the tem-
perature profile. The optical exchange factors are very
expensive to compute and they vary slowly with time.
On the contrary, the Planck function strongly depends
on temperature, which strongly varies during a day, but
is very fast to compute. Computing the optical ex-
change factors and the Planck function at different time
steps is therefore of immediate interest. Moreover, be-
cause the NEF ensures both the energy conservation
and the reciprocity principle, some of the exchange fac-
tors (the most important) may be computed more fre-
quently than others. These possibilities give various op-
portunities to reduce the computation time without
loosing accuracy. Some possibilities have been explored
in this paper. In particular we have shown that the most
important terms are the exchanges with boundaries,
number of which is proportional to the number N of
vertical layers. Computing those terms more frequently
than the others leads the computation time to increase
proportionally to N and not proportionally to N* as in
all the absorptivity/emissivity methods.

Another consequence of the splitting of the net ex-
change rates into optical exchange factors and Planck
function differences is the possibility to linearize the
Planck function for all or parts of the net exchanges.
This allows us to implement implicit or semi-implicit
algorithms at a low numerical cost (inversion of a tridi-
agonal matrix associated with exchanges between adja-
cent layers).

In our original radiative code (as well as in other
codes), reflections at the surface are considered in a
crude way: the reflected part of the downward radiation
and the radiation emitted by the surface are supposed
to have the same spectrum. We have shown that this
approximation leads to highly overestimate the cooling
of the atmosphere above the surface. The reason is that
the spectrum of the downward radiation strongly de-
pends on the gas absorption spectrum and is therefore
very different from the spectrum of the radiation emit-
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ted by the surface. An exact computation is possible but
double the computation time.

A drawback of the NEF is that only the net flux in
the atmosphere can be directly deduced from the net
exchanges, not the upward and downward fluxes (al-
though they are of experimental interests). Neverthe-
less we have shown that they can be estimated with a
few more assumptions. On the other hand, the optical
exchange factor between each gas layer and space does
correspond to the so-called weighting function used to
invert satellite flux measurements. Therefore a radia-
tive code based on the NEF might be well suited for
assimilation of satellite radiances.

The radiative code presented here is used in the last
version of the LMD GCM of Mars (Forget et al. 1999).
In addition to the absorption by gases presented in this
paper, the effects of aerosols are also considered. Out-
side the two CO, wide bands, both absorption and scat-
tering effect are computed using the algorithm of Toon
et al. (1989). Inside the two CO, wide bands, only ab-
sorption by the aerosols is considered, scattering being
neglected. This is consistent with previous studies that
show scattering by dust aerosols has the highest impact
in window regions of the atmosphere (e.g., Dufresne et
al. 2002). Currently a radiative code based on the NEF
that uses a correlated-k method for the spectral inte-
gration and that also considers scattering is under prog-
ress for the planet Venus.
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APPENDIX

Subgrid Temperature Quadratic Profile

We consider here an atmosphere with a temperature
profile that is compatible with a second-order black-
body intensity profile within the considered spectral
band

B(z) =az®> + bz +c. (A1)

We also assume that absorption coefficients are uni-
form. Under these assumptions, the net exchanges be-
tween two layers i and j [Eq. (12)] of thickness e sepa-
rated by a layer of thickness / lead to the following
double integral:
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—i12 +i2+e
Ui = j dv f dx f dy k3 exp[—k,(y — x)][B(y) — B(x)]
Av —1l2—e +1/2
=f dvfe dx Je dy kf exp[—k,(x + y)]exp(—k By + I/2) — B(—x — I/2)]
Av 0 0

= bj dvexp (—k,[1 — exp(—ke)){(I + 2/k,) x [1 — exp(—k,e)] — 2e exp(—k,e)}.
Av

This is obtained by expanding the expression of B in
Eq. (A2). The terms with ¢ directly disappear. The
double integral of the terms with a is equal to zero.
Only the terms with b remain.
Under the same assumptions, Eq. (A1) leads to
B; — B;

b=
+e

(AS)

~

with B, and B, the average blackbody intensities of lay-
ers i and j.

Therefore, Eq. (A4) depends only on the layer aver-
age of B, which means that all quadratic profile that
meet the layer averages have the same first order terms
and therefore lead to identical net exchange rates. In
particular, the linear subgrid profile approximation
used in section 3b for adjacent layer net exchange com-
putations is therefore equivalent to a second order ap-
proximation.

Note that this demonstration is only valid for condi-
tions in which layer thicknesses are comparable and
that the reasoning is made with blackbody intensity
layer averages, whereas GCM outputs are temperature
averages. Practical use therefore requires that black-
body intensities may be confidently linearized as func-
tion of temperature, which implies limited tempera-
tures gradients.

Errors due to the isothermal layer approximation

The same analysis may also be used to justify the use
of the isothermal layer assumption for nonadjacent
layer net exchange computations. We consider an at-
mosphere with the same previous temperature profile
that is compatible with a second order blackbody in-
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(A2)

(A3)

(A4)

tensity profile within the considered spectral band. Un-
der this assumption, the net exchange between two lay-
ers i and j [Eq. (12)] of thickness e separated by a layer
of thickness / may be approximated as

Jf,-,,- = J; dvexp(—kJ)[1— exp(—kve)]z(Ej - B)
(A6)
=J dvexp(—k/J)[1— exp(—kve)]zb(l + e).
Av

(A7)

Using the exact expression of ¢;; [Eq. (A4)], the cor-
responding relative error ¢ = (Y — ¢)/{ in the optically
thick limit writes

2 — ke
2—kJl’
If the optical thickness between the two layers distant
of [ is also high (k,/ > 1), the relative error on the net
exchange is ¢ =~ e/l, which means that the relative error
on the net exchange between two layers due to the
isothermal layer approximation decreases when the dis-
tance between the two layers increases.

One can be more precise when considering three
contiguous layers, numbered 1, 2, and 3, of thickness e.
We estimate the error made when computing the net
exchanges between layer 1 and the two other layers, {
=, + Y 3, accounting for the exact sublayer profile
for ¢ , (i.e., for the distant layer) and using the isother-
mal layer assumption for i 5 (i.e., for the distant layer).
With the same notation as here above with [ = e, the
corresponding relative error becomes

if ke>1thene~

(A8)

(kye — 2)[1 — exp(—k,e)] + 2k, e exp(—k,e)

(kye + 2)[1 — exp(—k,e)] — 2k e exp(—k,e) +

This relative error is 0 for small values of the optical
thickness ke, reaches 5% for an optical thickness of 2,

1 — ae/b (A9)
W{z[l —exp(—kye)] — 2k e exp(—k,e)}

then decreases toward 0 when the optical thickness in-
creases.
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