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Abstract—k-distributions corresponding to Malkmus’ narrow band model are inverse
Gaussian distributions. Inverse Gaussian theory developments are therefore directly relevant to
gas radiative transfer modeling. The present text illustrates some significant benefits that could
be made from this observation: (i) k-distribution formulations are simplified, (ii) numerical
integration procedures can be optimized for each new configuration type, and (iii) frequently
encountered integrals can be solved analytically and numerical integrations can be avoided.
This last point is illustrated with the computation of infra-red cooling rates in planetary
atmospheres. ( 1999 Elsevier Science Ltd. All rights reserved.

1 . I N T R O D U C T I O N

Malkmus’ narrow band model1 has become a common tool for modeling gas radiation. It is a two
parameter model for the average transmission function of a gas column of length l over a narrow
spectral interval:

q6 (l)"
1
*l P

*l
exp(!kll )dl"exp[/!/*(l)] (1)

with
/*(l)"/ (1#2kl//)1@2. (2)

The two parameters are the average absorption coefficient k and the shape parameter /"2c6 /d1
where c6 is the average half linewidth at half height and d1 is the average line to line spacing.

With the emergence of the k-distribution and correlated-k-distribution methods,2 Malkmus’
model has been frequentely used to derive a model for the probability density function f of the
absorption coefficient k within a narrow spectral interval. This was performed via an inverse Laplace
transform of the average transmission function:3
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The aim of the present text is to point out that f (k) is an inverse Gaussian distribution and to suggest
that direct benefits can be made from the abundant inverse Gaussian literature.

2 . INVERSE GAUSSIAN DISTRIBUTIONS

Detailed descriptions of the inverse Gaussian theory and its related literature can be found in two
recent monographs;4,5 we summarize hereafter the aspects most relevant to the present application.
All referred material may be found in these two references, except where specifically mentioned. The
need for this univariate distribution appeared in the framework of Brownian motion theory. The
inverse Gaussian was first introduced by both Schrodinger and Smoluchowski in 1915 (as the ‘‘first
passage time’’ distribution of Brownian motion with drift) and the first important statistical
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properties were established by Tweedie in 1957. However, it is only recently that the inverse
Gaussian distribution has been intensively used and analysed. Its main features are its ability to
model highly skewed distributions and its numerous analogies with the normal distribution.

The probability density function I of an inverse Gaussian distributed variable X is
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ab

2nx3
expC!

b

2

(x!a)2

ax D. (4)

The definition interval is ]0, #R[ and a and b are positive parameters. The positive moments about
zero E

r
are given by the following expression:
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and the negative moments are related to the positive ones via

∀r50, E
~r

(a, b)"E[X~r]"
E
r`1

(a, b)

a2r`1
. (6)

The parameter a is the distribution mean and the variance is var(X)"a2/b. A useful property of
inverse Gaussians is also

I (x; a, b)"a~1I(x/a; 1, b). (7)

This means that any inverse Gaussian distributed variable can be normalized and described with
a one-parameter distribution called the standard Wald’s distribution:

W (x; b)"I (x; 1, b). (8)

For this reason the parameter b is named the shape parameter. The cumulative distribution function
of the inverse Gaussian was expressed by Shuster in terms of the standard normal distribution !:

P
x

0

I(u; a, b)du"!C!S
b

x/a
(1!x/a)D#e2b!C!S

b

x/a
(1#x/a)D. (9)

Also worth mentioning here is the algorithm designed in 1976 by Michael and co-workers for
generating random variates from an inverse Gaussian distribution. Sampling of X from the inverse
Gaussian distribution with mean a and shape parameter b can be performed with a two steps
algorithm. First a value x

1
is generated randomly according to a chi-square distribution with one

degree of freedom. x
1

is used to compute x
2

such that
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Then a Bernoulli trial is performed where the value x"x
2

is retained with probability
P"a/(a#x

2
) and x"a2/x

2
with probability 1!P.

The reciprocal of the inverse Gaussian has interesting properties that are relevant to gas radiation
applications. If X is an inverse Gaussian distributed variable with mean a and shape parameter b,
then the probability density function R of the random variable ½"1/X is

pdf (y)"R(y; a, b)"ayI(y; 1/a, b). (11)

Its moments can be obtained from those of X according to

E (½r)"
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. (12)

Its cumulative distribution function is not given specific attention in the literature. The mathemat-
ical developments leading to the following expression are given in Appendix A:
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3. OPTIMISATION OF NUMERICAL INTEGRATION PROCEDURES

At the outset of the paper is the observation that the probability density function f (k) correspond-
ing to Malkmus’ narrow band model is an inverse Gaussian distribution of mean k and shape
parameter /. Equation (3) can be simply written as

f (k)"I (k; k, /). (14)

The inverse Gaussian analytical properties are therefore useful when deriving k-distribution
methods for spectral integration over narrow band intervals. Whatever the approach chosen,
a central part of such methods is the numerical integration over the k-domain.2,6~8 The spectral
average quantities are expressed as

AM "
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*l P*l
A(kl)dl"P
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0

A (k) f (k) dk (15)

and k-integrals are commonly estimated with Gaussian quadratures or Monte Carlo methods. The
optimization of such integration procedures require a confident knowledge of k-intervals that are
most significant to the final integral result. This is very much dependent on the type of dominant
radiative exchanges (surface—surface, gas—surface or gas—gas exchanges), the spectral structure (the
shape parameter /) and the optical depth (i"kl). The net exchange formulations is practical in
such contexts: radiative transfers are described via Net-Exchange Rates (NER) t between zones
considered by pairs which allows to distinguish between different exchange types.9 The mono-
chromatic NER between two elementary surfaces, one elementary surface and one elementary gas
volume or two elementary gas volumes are, respectively,
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where l
PQ

is the distance between the two points, n
PQ

is the unit vector in direction PQ, n
S
(Q) is the

unit vector normal to the surface in Q, Bl is the spectral blackbody intensity and kl the spectral
absorption coefficient. Equation (15) allows to express narrow band average net-exchange rates as
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with

f 44(k; l )"
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f '4(k; l )"
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The distributions f 44, f '4 and f '' are k-distributions over the ]0, #R[ interval. They are to be
interpreted as indicators of the contributions of k to the surface—surface, gas—surface and gas—gas

Inverse Gaussian k-distributions 435



Fig. 1. k-cumulatives g44 for surface—surface exchanges at distance l as a function of the inverse transmission
cumulative (g (k)":k

0
f (u) du); /"10~3.

NER (respectively) at distance l. For instance, f 44(k; l
PQ

) dk is the fraction of the NER between two
elementary surfaces at points P and Q that occurs at frequencies for which kl is in the interval
[k, k#dk]:
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These three distributions can be expressed conveniently in terms of inverse Gaussian distributions:

f 44(k; l)"I (k; k* (l), /*(l)), (26)

f '4(k; l)"RAk;
1

k*(l )
, /*(l)B, (27)

f '' (k; l )"k*(l )~2A1#
1

/*(l )B
~1

k2I (k; k*(l ), /*(l )). (28)

with k*(l)"k (1#2kl//)~1@2 and /*(l )"/ (1#2kl//)`1@2. For f 44, the above expression is
obtained by replacing f (k) in Eq. (22) with its expression of Eq. (3), q6 (l) with its expression of Eq. (1)
and by regrouping the exponentials. For f '4 and f '', Eqs. (22) and (26) are used as well as the two
following relations deduced from Eq. (1):

Lq6
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(l)"!k*(l )q6 (l), (29)

L2q6
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(l)"q6 (l )k* (l)2A1#
1

/*(l )B. (30)

The cumulative g44 and g'4 of f 44 and f '4 can be derived analytically as direct consequences of Eqs. (9)
and (13). The derivation of the cumulative g'' of f '' is detailed in Appendix A.

The fact that analytical expressions are available for these three functions allows easy quantifica-
tions, for a given spectral band, of the contributions of any k-interval to the radiative exchanges at
distance l for the three possible exchange types. Apart from the interests in terms of physical
interpretations, the fact that g44, g'4 and g'' exist in close form permits the derivation of optimized
k-interval discretizations. This was illustrated in Ref. 7 for g44 (called the cumulative transmission
function and denoted h) and can be extended to g'4 and g'' for specific studies of gas—surface and
gas—gas exchanges. These cumulative distributions are plotted in Figs. 1—3 for /"10~3 and two
optical thicknesses i3M0.1, 10N, as functions of g (k)":k

0
f (u)du. Figure 1 illustrates that g44 is

a regular function of g. This fact ensures that the values that are likely in accordance with
f correspond to values that are likely according to f 44 and therefore they are significant for the NER
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Fig. 2. k-cumulatives g'4 for gas—surface exchanges at distance l as a function of the inverse transmission
cumulative (g (k)":k

0
f (u) du); /"10~3.

Fig. 3. k-cumulatives g'' for gas—gas exchanges at distance l as a function of the inverse transmission
cumulative (g (k)":k

0
f (u) du); /"10~3.

integral (Eq. (20)). On the contrary, Figs. 2 and 3 show that g'4 and g'' are strongly varying functions
of g for g-values close to unity (i.e. for large k values). This means that a small interval of g has a large
influence on the gas—surface and gas—gas NER integrals (Eqs. (20) and (21)). These observations
imply that regular quadratures can be used for surface—surface exchanges and are coherent with the
fact that most quadrature schemes give specific attention to the vicinity of g"1 for gas—surface and
gas—gas exchanges.6~8 Note however that different quadrature refinements may be required depend-
ing on optical thickness.

A significant benefit that we made of the inverse Gaussian theory concerned k-sampling algo-
rithms for Monte Carlo simulations.10,11 Combinations of k-distribution models and Monte Carlo
methods for spectral integration of radiative transfer equation require random generations of large
samples of absorption coefficient values according to adapted k-distributions. First attempts were
strongly limited (in terms of computing requirements) by the inefficiency of numerical k-sampling
procedures because of the high skewness of k-distributions encountered in most engineering and
atmospheric configurations. In this respect, consequences of Eqs. (26) and (27) are far reaching:
(i) Michael’s algorithm (Sec. 2) provides a particularly efficient way of generating large k-samples of
the distributions f 44 and f '4 ; and (ii) for studies that require gas models other than Malkmus’ model,
inverse Gaussian properties of the best fitting Malkmus’ model may be useful for sampling
procedure design.
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4 . ANALYTICAL INTEGRATION FOR STRATIFIED CONFIGURATIONS

The preceding section concerns studies in which a k-distribution formulation has been chosen
from the start. We now illustrate that, within studies in which this initial choice has not been made
(studies that stick to the spectral narrow band average formulation), a transformation to the
k-domain (which corresponds practically to an inverse Laplace transform) often facilitates
the derivations because of inverse Gaussian properties.

When computing infra-red cooling rates in horizontally stratified planetary atmospheres, inte-
grals are encountered of the following forms:12

A (l )"P
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q6 (l#z)
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and
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where z is the vertical coordinate and BM (z) is the spectral average black-body intensity at altitude z.
These integrals appear when considering the influence of an atmospheric layer of thickness ¸ on the
radiative balance or the radiative flux at a given altitude. The assumption is commonly made that
the blackbody intensity is a polynomial function of altitude within each layer, which means that its
derivative may be written as

LBM
Lz

(z)"
N
+
n/0

a
n
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and Eqs. (31) and (32) are computed with standard methods of quadrature. A transformation to the
k-domain allows to solve these integrals analytically whatever the polynomial order and to avoid
numerical quadratures. The average transmission function and its derivative are written in terms of
k-distributions:
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Substituting Eqs. (33)—(35) into Eqs. (31) and (32) and inverting the z and k integrals gives
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Equation (40) leads to the following recurrence formula:
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and

h
n
(k)"!

¸n

k
exp(!k¸)#

n

k
h
n~1

(k). (42)

Using this recurrence formula, A and C can be expressed as weighted sums of integrals of the general
form

I
n
(d)"P
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1

kn
exp(!kd) f (k) dk (43)

with d"l or d"l#¸.
The remaining integral involves the k-distribution f multiplied by an exponential extinction. It

has already been pointed out that such a product leads to an inverse Gaussian distribution and, with
the preceding notations, I

n
(d) can be written as

I
n
(d )"q6 (d) P

=

0

k~n f 44 (k; d) dk (44)

which is the average transmission function time of the nth negative moment of an inverse Gaussian
distribution of mean k*(d) and shape parameter /*(d):
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This result provides analytical expressions for the vertical integrals A and C for all configurations in
which the assumption of polynomial BM profiles is meaningful. The developed expressions are given in
Appendix B for linear and quadratic BM profiles.
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Thesis, Université Paul Sabatier, Toulouse, France, 1994.

12. Rodgers, C. D. and Walshaw, D., The computation of infra-red cooling rate in planetary atmospheres.
Quart. J. Roy. Meteorol. Soc., 1966, 92, 67—92.

APPENDIX A: CUMULATIVE OF THE INVERSE GAUSSIAN RECIPROCAL

The following complex function is considered where x and b are positive parameters:

C (t)"P
x

0

e*56W(u; b) du (A1)
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which can be expressed as (Eqs. (4) and (8))
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and Eq. (9) leads to

C (t)"expMb[1!(1!2it/b)`1@2]NG!C!S
b

x
(1!x(1!2it/b)`1@2)D

#exp[2b(1!2it/b)`1@2]!C!S
b

x
(1#x (1!2it/b)`1@2)DH. (A3)

Taking the first derivative of C (t) and evaluating it at t"0, we get
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This results allows to express the cumulative distribution function of the reciprocal of the inverse Gaussian in a simple way.
Indeed Eqs. (7) and (11) give

P
y

0

R(u; a, b) du"P
ay

0

u/aI(u/a; 1/a, b) du"P
ay

0

uW(u; b) du (A5)

and combining Eqs. (A4) and (A5) leads to Eq. (13). Equation (A4) can also be integrated by parts to get the following
expression:
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This allows the derivation of the cumulative distribution of f ''. First, f '' is expressed in terms of the standard Wald’s
distribution (Eqs. (7), (8) and (28)):
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which may also be written as
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APPENDIX B: DEVELOPED EXPRESSIONS FOR A
0
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The following expressions are obtained on the basis of Eqs. (36)—(39) and (45):
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with
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