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Abstract

The Monte Carlo method is used for simulation of radiative heat transfers in non-gray gases. The
proposed procedure is based on a Net-Exchange Formulation (NEF). Such a formulation provides
an efficient way of systematically fulfilling the reciprocity principle, which avoids some of the
major problems usually associated with the Monte Carlo method : numerical efficiency becomes
independent of optical thickness, strongly non uniform grid sizes can be used with no increase in
computation times and configurations with small temperature differences can be addressed with
very good accuracy. The Exchange Monte Carlo Method (EMCM) is detailed for a one-dimensional
slab with diffusely or specularly reflecting surfaces.



I Introduction

While the role of infrared exchanges in gases is well known for very large (atmospheric) or very hot
(combustion) systems, its importance in small, nearly isothermal systems at moderate temperature
is much less advertised. And yet, several experimental investigations concerning natural convection
in dwelling rooms using various configurations including highly reflective walls, seem to indicate
a coupling between radiative processes and fluid flow (Yguel 1988, Palenzuela 1992, Fournier
1994). Thus, the present study was devoted to the development of a sufficiently precise method
for radiation exchange computations within nearly isothermal cavities at moderate temperature,
filled with an air / water vapor / carbon dioxide mixture, and having possibly reflecting walls.

Numerical simulations of radiative heat transfer in gases originated mainly in meteorology and
astrophysics research (Goody and Yung, 1989) as well as in engineering heat transfer research
for high temperature systems (Ludwig et al., 1973). Efforts concerned the development of gas
radiation models and their implementation in complete radiation heat transfer simulations through
the integration of the radiative transfer equation. Nowadays the use of “exact” line by line models
remains unfeasible for complex systems ; most authors make use of accurate band models like the
narrow band statistical model (NBSM) proposed by Malkmus in 1967. This type of model leads
to specific difficulties, when solving the radiative transfer equation, due to spectral correlations,
within each band, between intensity and gas transmittance. We will not enter in a detailed
description of this phenomenon which is extensively discussed in the literature. The main points
are :

i) whatever intrinsic precision band models may reach, final results can be very inaccurate if
correlations are ignored,

ii) specific solutions have been proposed for black wall enclosures (for example Zhang et al., 1988)
but the problem remains open when surface reflections occur (Menart et al., 1993a, Menart and

Lee, 1993b).

One of the best available solution to this complex problem seems to be the use of the Monte Carlo
method (MCM). Some care is required for emission/absorption correlations but solutions are
available (Modest, 1992). For details about the use of the MCM with a NBSM one may also refer
to Cherkaoui et al. (1992) and Liu and Tiwari (1993 and 1994). Two well advertised disadvantages
of the MCM are the difficulty to cope with strongly non-uniform grids and the drastic increase of
computation times with increasing optical thickness (Howell, 1988 and Siegel and Howell, 1992). A
third difficulty appears, specific to nearly isothermal systems : radiation energy balances are very
small compared to emitted and absorbed energies ; a one percent uncertainty on the computed
absorbed and emitted energies may lead to more than a hundred percent error on the radiation
balance of a given cell. Such configurations would demand extremely accurate computations, that
is to say extremely large numbers of rays to follow, and hence prohibitive computer run times.
Many efforts are being made in trying to improve the MCM : biasing techniques (Martin and
Pomraning, 1990), reverse MCM (Walter and Buckius, 1992) and hybrid methods (Vercammen
and Froment, 1980, Farmer and Howell, 1994). These different approaches represent good tools
for specific problems but it can be a subtle task to choose among all available MCM improvements
or to try to make use of several techniques simultaneously when required.

We started from the following statement : most of the aforementioned difficulties seem to be
related to the violation of the reciprocity principle (this is particularly obvious for the problem
of strong grid size differences). We therefore aimed at the development of a MCM that would
intrinsically fulfill this principle. The approach used is entirely based on the concept of radiative
exchange. The analogy to the physical processes is kept but emission and absorption mechanisms
are considered simultaneously. In the standard MCM, when a ray between two points A and B is
defined, it is used for the transport of energy from A to B. In the present method, the same ray will
be used for the radiative exzchange between A and B. This means that radiative transports from
A to B and from B to A are not dissociated. This is achieved through the development of the net-



exchange formulation (NEF) described in Sec. II in the case of mono-dimensional configurations
with black surfaces. Sec. III shows how the MCM can be efficiently applied on the basis of such a
formulation. The extension to reflective surfaces and some validation tests are the subject of Sec.
IV. Simulation results are presented in Sec. V.

IT Net-Exchange Formulation (NEF)

The starting point is a formulation very similar to that proposed by Green (1967) for monochro-
matic radiative exchanges and extended by Joseph and Bursztyn (1976) for narrow band models.
These authors were concerned with the simulation of radiative heat transfers in stratified plane-
tary atmospheres. The present formulation has some common features with the zone formulation
(Hottel, 1967), the main difference being that the assumption of isothermal cells is dropped.

(a) Monochromatic formulation. We consider here an infinite volume of gas at uniform
pressure P confined between two parallel black plates. Plate 1 (at S(1) = 0 co-ordinate) is at
temperature 6°(1) and plate 2 (S(2) = D) is at temperature 0°(2). As this configuration is one-
dimensional we will only make use of fluxes and net fluxes per unit surface. The optical depth
7, (z,2') between z and #’ is defined as

(1)

(z,2') =

The net-exchange rate (NER) between two elementary gas layers at the « and 2’ co-ordinates is
defined as the radiative flux emitted at ' and absorbed at x minus the radiative flux emitted at
z and absorbed at z’. For a monochromatic radiation this NER can be written as (Green, 1967 ;
Joseph and Bursztyn, 1976)

O*Ygd (z,a') , b2 | 9%Ee(a @)
~bede = "B (@) = Bu(2)] ‘m[%(%l)]‘——w (2)
where 7, (z,z') is the monochromatic slab transmittance
1
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Similar expressions can be derived for the NER between surface m and an elementary gas layer
at  :

DT [ mm) ~ Bule)] |5 [T (S0m) )] = - 2 ()
and between the two surfaces
U (1,2) = 7B (2) = By (D]To(S(1), S(2)) = —¢;°(2,1) ()

Local radiation balances may be expressed using partial exchanges. The resulting expression for
the net inflow at = of monochromatic radiant energy per unit volume is :
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We shall use a term commonly used in the literature of atmospheric sciences : “radiation budget”

is used instead of “radiation net flux” to avoid confusion between “net rates” and “net-exchange

rates”. Similarly the surface radiation budget at S(1) is :
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(b) Spectral integration. Preceding expressions can be integrated over a spectral interval
of width Aw. If the interval is narrow enough, the black body intensity can be assumed uniform.
Integration of Eq. (2) gives, for instance
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Inverting the frequency and angular integration (see Eq. 3) leads to the following expression
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T and F are respectively defined as the spectral average slab transmittance and the spectral
average transmission function. Integration over the whole spectrum is obtained by adding the
contributions of the Ny narrow bands :
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Averaging Eqs. (4) and (5) gives two very similar expressions for gas-surface and surface-surface
exchanges. Up to this point, the only assumption made is the spectral independence of the black
body intensity within a narrow band. It allows preserving the antisymmetry in (x,x’) of the
spectrally integrated NER. Various narrow band models may be used to approximate the average
transmission function. Considering the initial application field of the present work (building
thermal analysis) the Malkmus NBSM was retained with the assumption of uniform gas radiative
properties

F(z, o', p) = T(u(z,2', p)) (13)

where u is the effective path length and 7 is the Malkmus transmission function
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(c) Discretization.  The volume of gas is divided in Ny layers of thicknesses AX;. We want
to emphasize that the layers are not assumed isothermal ; the internal temperature profiles are
accounted for, without restriction. If we consider the it" gas layer, between the X; and X;4;
abscissae, and the j* gas layer, between X; and X;41, Eq. (9) can be integrated in z and 2’ to
give the average NER between layers ¢ and j :
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Equivalent expressions can be derived for the NER 1/)95(1', m) between layer ¢ and surface m and

¥ (1,2) between surfaces 1 and 2. The average radiation budget for the i** layer is :

P =360+ Y m) (7)



and for surface 1, it is expressed as

=20+ (,) )

II1 The Monte Carlo Numerical Scheme

Radiative transfer specialists commonly refer to the MCM as a method for numerical simulation of
a stochastic process : by invoking a probabilistic model of the radiative exchange process and also
applying Monte Carlo sampling techniques, it is possible to choose a semi-macroscopic approach,
and avoid many of the difficulties inherent in the averaging process of the usual integral equation
formulations (Howell, 1968). The aforementioned probabilistic model is usually designed in strict
analogy with the physical processes of photon emission, transmission and absorption : we will
refer to such methods as Analogue Monte Carlo Methods (AMCM).

The present approach is significantly different. We make use of the MCM for numerical computa-
tion of multidimensional integrals (Press et al., 1992). No physical probabilistic model is required.
An integral formulation is chosen (NEF) and a statistical method (MCM) is used to compute
integrals. A major feature of such a method is that the sampling laws could be chosen arbitrarily
and do not have to match any physical property.

(a) Principle. The Monte Carlo procedure for numerical estimation of an integral A =

Jp f(¥) dv is the following

i) A probability density function p(¥) is chosen arbitrarily on D with the only constraint that it
must be non zero on D.

ii) The associated weighting function is defined as
w(¥) = f(7)/p(v) (19)

iii) N values of ¥ are generated randomly according to p(¥) and for each value the corresponding
weighting factor w is computed. The average value < w >y and variance 0']2\7(1[}) of these N
realizations of the variable w(%) are then computed. < w >y and % (w) themselves are random
variables.

iv) A =< w >y is an estimate of integral A. The expectation of Ais A. An estimate of the
standard deviation of A (henceforth named “statistical error”) is on (A) = N=%% oy (w)

When computing sums instead of integrals, the preceding procedure is valid if replacing pdf’s with
discrete probabilities.

The key point of this method is the choice of probabilities and pdf. Again, this choice is a priori
totally arbitrary. However an improper choice of probabilities may lead, for a prescribed precision,
to an extremely large sampling size. Obviously, the criterion is the variance of w(#) . Thus one
should choose p(¥) such that the variations of f(¥)/p(¥) are minimal, keeping in mind that the
random generation according to p(¥) must be feasible and computationally efficient. Probabilities
may also be chosen to match physical properties (like the Lambert Law for surface emission
angles). This may lead to an increase of computational costs but provides the developer with a
useful physical insight into the numerical procedure.

(b) Probability functions. The MCM is applied to compute the multidimensional integrals
that appear in the NEF. In this formulation, independent expressions correspond to the NER for
each pair of cells. It is therefore natural (although not necessary) to preserve this independence
in the numerical scheme. We detail hereafter the probability functions retained for the MCM
integration of the NER between two gas layers.



The total NER between the i and the j'* gas layers is defined from Egs. (9), (12) and (16) :
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Thus the total NER computation involves one discrete sum, one integral over angles and two
integrals over the z and z’ co-ordinates. According to the general procedure presented in the
preceding paragraph we need to define probabilities for each of these quantities. The associated
weighting function will then be (Eq.(19)) :
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Uniform densities are used for positions within layers ¢ and j and the pdf of the direction cosine
p corresponds to an isotropic emission (Table 1).

'wfjg Lz, 2’ p) = (22)

In order to determine discrete probabilities for spectral bands, we tried to estimate roughly the
NER Elgg(i,j) between i and j on each band [. This renders it possible to favor bands on which
most of the radiative exchanges occur. If the pdf chosen for z, ' and p are meaningful one can
simply state that if Z,#’ and fi are the average values of z, 2’ and p according to p;(z), p;(2') and
q(p) respectively, then a rough estimate X?(3, j) of Elgg(i,j) Is :

fool 2,3 )
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Therefore the following probability is chosen for the [*? spectral band :
X

Ny
> 1
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To avoid problems when 6(Z) = 6(&'), the black body intensity differences that appears in Eq.(24)
are replaced by their derivatives relative to temperature. Similar developments are required for
gas-surface and surface-surface exchanges (Table 1).

It is worth mentioning that the distance traveled between emission and absorption points does
not appear as a variable to be randomly generated. Two locations are generated independently
within the two considered cells from which the “exchange distance” is simply computed.

(¢) Implementation. The quantities to be numerically estimated are the NER, for each pair of
cells. The radiation budget of each cell is obtained by summing the NER between the considered
cell and all other cells in the system (Eqgs. (17,18)). The code (See Fig. 1) contains therefore
(Ng+ 2)(Nq + 1)/2 independent Monte Carlo computations - the NER between a cell and itself
being zero per definition.

The estimation of each (¢, j) requires the Monte Carlo computation of an n-dimensional integral :
n = 4 in case of two gas layers (v = (z,2',,{)), n = 3 in case of a gas layer and a surface
(¥ = (2, 1,1)) and n = 2 in case of two surfaces (¥ = (y,!)). The algorithm, following strictly the
scheme detailed in Sec. III(a), involves : i) random generation of N realizations of the vector @
according to p(z), p(z'), ¢(p) and P(l) (see appendix), ii) computation of the weighting function
w(?) (Egs. (19) and (22)), iii) storage of the sums of all w and w?. Details are given in Fig. 1 for
a two gas layer case.



Note that computing separately each NER, allows specific optimization for each pair of cells. For
instance, the statistical laws used for narrow-band sampling turn out to be quite different whether
the two cells are geometrically far apart or nearly adjacent.

Many pseudo-random number generators may be used. As a matter of fact we did use five of
them, from the very low grade RNDM (of the multiplicative congruential type) to the very high
quality RANLUX (“subtract-with-borrow” algorithm modified according to Luscher (1994)), both
implemented in the CERN program library (James, 1994). The results on which comparisons were
made appeared compatible within statistical errors. This insensitivity is a strong argument for
considering the present method as a good unbiased reference method.

IV One Dimensional Slab with Reflective Surfaces

It is well known that narrow band models become difficult to handle (because of correlation effects)
as soon as multiple reflections can play a significant part in the total heat transfer. As mentioned
above, the NEF is not affected by correlation effects, therefore the EMCM is quite efficient for
such configurations. An outline of the method is presented in the case of gas-surface exchanges
with specular reflections. A detailed account is given in a forthcoming technical note (Cherkaoui,

1996).

(a) Formulation. The NER between gas layer ¢ and surface m in a narrow band [ can be split

into an infinite sum of NER via 0, 1, 2 ... 7, ... reflections :
U (im) =Y (6, msr) (25)
r=0

. —gs* .
In the case of specular reflections, ¥/° can be written as
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where R(r) is the product of the r surface reflectivities and U(r) is the total effective path length.

(b) Probability functions and implementation. The algorithm for the computation of
radiative exchanges with reflecting surfaces is fairly similar to that presented in Section III for
black surfaces. We again consider separately the NER, for each pair of discretized elements. For a
given pair we compute separately the NER without reflection and with more than one reflection.
The term without reflection is computed with the algorithm presented for black surfaces; the only
difference is that the surface emissivities need to be taken into account.

The term with more than one reflection is an infinite sum. Practically the reflections are considered
one after the other as for a ray tracking technique and a truncation procedure is defined so that
the computation is stopped as soon as further reflections do not participate significantly to the
exchange. The overestimate £9° of the truncation error after ry reflections is chosen such that
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Overestimation functions are proposed in (Cherkaoui, 1996). Probability functions are chosen as
in the black body surfaces case, except for the narrow band probabilities: the NER rough estimate
(Eq.23) is here replaced with
* 7 hgs l’i?m?N’]‘ + g3 l’i’m’N’]‘
9 (i, my < LB m L) £ € E m i ) (29)
pi(2) q(f1)




which i1s the sum of the NER for one reflection and the truncation error overestimate for one
reflection at g = i and & = Z. The resulting procedure is summarized hereafter :

i) z, p and ! are generated randomly according to p(z), ¢(¢) and P({) respectively.

ii) For each value of r, starting from r = 1, we compute the truncation error £9° (!, 2, m, u, r) and
we keep the first value rg for which £9%(1, &, m, u, 7o) is lower than the required precision.

iii) We then store the weighting factor w9® associated with the first 7o terms of h and the weighting
factor W9 associated with these first ry terms of h plus the truncation error :

Tul h9? (l, z,m,p, r)

P) pi(z) q(p)
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In this way the absolute value of the radiation budget ¢ can be under and over-estimated by using
the average weights < w > and < W > :

r=
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W (L, m, p,ro) = wi (L, z,m, p,mo) + (31)

|<w>| <Y << W >| (32)

For pure diffusive surfaces, the same probabilities can be used, the only difference in the procedure
being that the direction p is not kept constant along the path. At each reflection a new value of
p is generated according to the Lambert angular distribution. The path-length U(r) takes these
various angles into account.

(¢) Validation tests. Most benchmark configurations for gas radiative transfer are in the high
temperature field. Table 2 contains results of high precision EMCM simulations for configurations
in which the gas is isothermal at # = 1000K and is either pure carbon dioxide or pure water vapor
at atmospheric pressure. In order to allow comparisons with published results, some simulations
where held where only one spectral band is considered : the 3755¢cm™! band for water vapor
(extending from 2875cm =1 to 4250e¢m~1) and the 3715¢m~! band for carbon dioxide (extending
from 3275cm™! to 3875cm™'). Radiative band parameters are those published in Hartman et al.
(1984), Soufiani et al. (1985), and Zhang et al. (1988). Our results are compatible (maximum 2%
difference) with those published in Kim et al. (1991), Menart et al. (1993a and 1993b) and Liu
and Tiwari (1994).

Various internal consistency tests were also performed. The first one consists simply in the simul-
taneous development and inter-comparison of two independent codes, one that corresponds exactly
to the algorithm detailed in the present paper (Cherkaoui 93) and one that makes use of the same
theoretical approach with a k-distribution method (Fournier 94). The second set of tests relates to
the way reflections are handled. A double simulation is performed : one with two black surfaces,
the other with a black surface facing a specular reflective surface (reflectivity p). It can be shown
that, if the temperature is continuous at the gas/wall interface, the limit value of the volumetric
radiation budget at the reflective wall is 1 + p times the radiation budget in the two black wall
case. In the special case p = 1 that multiplication factor is equal to two as the gas sees the system
twice, directly and through a “mirror” reflection. This property is verified within statistical errors
in our computations. Finally, the numerical quality of the method was checked in numerous test
runs with two highly reflective surfaces : over estimation of the truncation error is confirmed and
convergence achieved without any noticeable bias even for several hundred reflections.



V Results

The EMCM has been used for analysis of a wide range of nearly isothermal configurations with
specular as well as diffuse surfaces (Cherkaoui, 1993). Figures 2 and 3 are meant to illustrate the
gain over AMCM.

1) Computations are a few orders of magnitude faster and numerical efficiency is little dependent
on the system optical thickness : Figure 2 displays computation times for simulation of a one
meter slab with black surfaces. The gas is at atmospheric pressure and consists of carbon dioxide
mixed with a non absorbing gas composed of 79% nitrogen and 21% oxygen. The temperature
profile is linear from the cold surface temperature (6°(1) = 295K at S(1) = 0) to the hot one
(0% (2) = 305K at S(2) = D = Im). EMCM computation times are compared with those required
by the AMCM code previously detailed by Cherkaoui et al. with and without centering. In this
centering technique, computed fluxes are offset by corresponding fluxes in the isothermal case
(Cherkaoui et al., 1992). The numbers of bundles are tuned in order to obtain a 5% precision :
typically several hundreds per cell pair. These results confirm those of Liu and Tiwari (1994)
illustrating the fact that the MCM can be computationally efficient for the simulation of gas
radiative heat transfer. The EMCM allows us to go further in two ways : computations are
at least two orders of magnitude faster and the method remains operational for optically thick
systems. Notice that the present approach accounts for non-uniform temperature profiles within
each gas layer. Of course any further simplifying assumption (isothermal layers, uncorrelated
reflections ...) would reduce the computational costs.

2) Strongly non-uniform discretizations introduce no specific convergence difficulties : Figure 3
displays volumetric radiation budgets in the pure carbon dioxide case with various surface emis-
sivities. A strongly varied discretization is used in order to allow an accurate simulation of the
large radiation budget gradients at the walls : 20 layers with sizes ranging from 5 mm to 10 cm
and two zero thickness layers enabling the computation of the limit value of the radiation budget
at the boundaries. These profiles are typical examples of convergence qualities that would not be
achievable with a standard AMCM at acceptable computational costs.
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Appendix : sampling procedures

The cumulative distributions of the statistical laws introduced in the present text can be inverted
analytically. Therefore, sampling procedures can be derived on the basis of the simple relation :

A=g""(R) (33)

where R is a random variable distributed uniformly in the unit interval and g is the cumulative
distribution function of the random variable A to be sampled. We give hereafter the corresponding
relations for abscissae (z or z') and direction cosine (u). Sampling of x (Table 1) :

Sampling of u for isotropic angular distribution (Table 1) :

§= R, (35)



Sampling of p for Lambert angular distribution :

p=/Ry (36)

For the random generation of a spectral band according to the set of discrete probabilities P(1),
P(2) ... P(Ny), R; is generated uniformly in the unit interval and [ is chosen as the solution of
the following double inequality :

-1

> P(k) < R <Y P(k) (37)

k=1
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Nomenclature

A : integral to estimate

B : black body intensity , W/(m?.sr.em™1) ; B(z) is the black body intensity at temperature
6(z), and B*(m) is the black body intensity for the surface temperature 6°(m)

D : distance between the two surfaces, m
D : integration spatial domain

() : narrow band average transmission function
1

narrow band average absorption coefficient, m~!

r
k, : monochromatic absorption coefficient, m™
k
! : narrow band index

m : surface index

N : number of realizations

Ng : number of gas layers

Np : number of narrow bands

P,( ) : partial pressure of the gas absorber

Py : standard pressure (Pp = 1 atm)

P() : probability
P

(
q(

r : number of reflections

) : abscissa probability density function

) : direction cosine probability density function

S( ) : surface abscissa, m

T() : Malkmus transmission function

T : slab transmittance

u : effective path length | m

w, W : statistical weights

z,z' : coordinate

X; : abscissa of separation between gas layers (i — 1) and (i) , m
X; : abscissa of layer (i) center, m

AX : gas layer thickness , m

Av : wavenumber interval , em™?
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v : wavenumber , cm™!
€ : surface emissivity

p . surface reflectivity

p : cosine of cone angle (measured from normal of surface)
® : shape parameter for the Malkmus model

¥(4,J) : energy net-exchange rate between (¢) and (j), defined as the rate at which energy is
emitted at (j) and absorbed at (i) minus the rate at which energy is emitted at (¢) and absorbed

at (j)

¥ (i) : radiation budget of layer (i) , W per unit of reference area, W.m=2
f : temperature, K

7, : monochromatic optical depth , m

~ : optical path index

X, : rough estimate of 1,

¢ . overestimate of the truncation error

o( ) : standard deviation

Superscripts :

W . average for narrow band [ ; [ index is omitted when irrelevant.
g : gas layers

gg : exchange between two gas layers

gs or sg : exchange between a gas layer and an opaque surface

s : opaque surface

ss : exchange between two opaque surfaces

~ . average according to the chosen pdf

Abbreviations :

AMCM : Analogue Monte Carlo Method
EMCM : Exchange Monte Carlo Method
MCM : Monte Carlo Method

NEF : Net-Exchange Formulation

NER : Net-Exchange Rate

pdf : probability density function
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Gaz 0° | €1 | € D ¥ (1) ¥ (2) volumetric radiative
(K) (m) (EW.m=?%) (EW.m=?%) budget at center
(kW.m=3)
H,0 0. 1. | 1. 1. 28.094+ 0.015 — —23.174+0.04
0.5 24.26 4+ 0.01 - —50.07 £ 0.07
0.1 14.417+ 0.005 — —21964+04
0.1 1. 0.5 24254 0.004 | 28.00+0.01 —34.40 4+ 0.06
H-0 500. 10505 | 1. 4.700 % 0.004 - —4.917+0.012
1071 | 2,473 £0.002 - —43.08 £ 0.08
(3755em=1 1072 | 0.6594 £ 0.0004 - —130.0£0.2
bande 0.1]0.1 1. 1.160 %+ 0.002 — —1.4104+0.005
only) 1071 | 0.7755 4 0.0007 - —14.08 £ 0.04
1072 | 0.3448 £ 0.0003 - —68.17+£0.15
CO, 500. 10505 | 1. 1.709 £ 0.002 - —1.278 £ 0.004
1071 | 1.094 £0.001 - —18.05 £ 0.04
(3715em=1 1072 ] 0.3379 £ 0.0002 - —66.09+0.11
bande 0.1]0.1] 1. 1.278 £ 0.004 - —0.33954+0.0018
only) 10-1 18.05+0.04 - —5.175+0.017
1072 66.09+0.11 - —31.48 £ 0.08

Table 2: Surface radiation budget at the walls and volumetric radiation budget at center for high

temperature configurations (9 = 1000K, 05 = 05 = 6°)




Energy NER between surfaces
e computation of A;*(1,2) for all the narrow-bands !
e M.C. computation of ¢**(1,2) and its statistical error o(4**(1,2))
o (2,1) = —¢**(1,2) 5 o(¢*(2,1)) = o(¥**(1,2))
Energy NER between gaz layers and surfaces
olooponi=1,Ny
olooponm=1,2
e computation of X7 (i, m) for all the narrow-bands
e M.C. computation of ¢2° (i, m) and its statistical error o(¢?° (i, m))
o *9(m, 1) = —¢#*(i,m) ; o(¢*(m, i) = o (P (i,m))
o end loop
o end loop
Energy NER between gaz layers
olooponi=1,N4—1
olooponj=1i+4+1,Ny4
e computation of X?9(i, j) for all the narrow-bands !
e M.C. computation of ¢99(i, j) and its statistical error o(499(4, j))
o Y99(j, 1) = =99 (i, j) 5 o(¥99(j,4)) = o (499 (4, j))
o end loop
o end loop
Radiative budgets
o loop on m = 1 2

o ¢ (m) = Z e (m, m)+21/}5g(m 7)

o) = 3 ol )+ 3 (609 (m, )’

o end loop
olooponi:l Ny

o 99() = Z w9 (i,m) + Z W99(i, 5)

m=1

cWI@)) = 3 o(49 (i, m))’ +nga<wg<i,j>>2

m=1

o end loop

M.C. computation of ¢99(7, j) and its statistical error o (99 (i, j))
o Y991, j) =0 ; B(:,j) =0
o loop on e=1,N “loop on the N realizations”
e random generation of z,2’, u,l (see appendix)
e computation of w;;(l, z,2', i, ) (equation (22))
o YI9(i,j) = ¢9(1, j) + ¥ wij
o B(i,j) = (i, 5) + [wi]?
o end loop
o o(¥99(i,§)) = /B, J) — W9 (i, )P /VN
o Y99(j, ) = —¢99(1,j) 5 o(¥99(4,4)) = o (¥99(4, )

Figure 1: General EMCM algorithm and details for gas-gas NER computations.
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Figure 2: CPU time (with RNDM as random generator, on a 40 MFlops workstation HP-735)
versus Carbon dioxide partial pressure for AMCM and EMCM. Bundles numbers are tuned to get
a statistical error lower than 5% on radiation budgets 15cm off the surfaces. Both surfaces are
black (€1 = €2 = 1) ; temperature profile is linear from 295K at S(1) =0 to 305K at S(2) = 1m ;
the gas medium is regularly discretized into 10 layers.
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Figure 3: Volumetric radiation budget for pure CO3 (Pco, = latm) with a linear temperature
profile varying from 295K at S(1) = 0 to 305K at S(2) = 1m. The various diffuse surface
emissivitiesare : €1 = €3 =1;¢1 =3 =0.1 ;¢ =0,¢9 = 1.
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