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Abstract: The process of parameter estimation target-
ing a chosen set of observations is an essential aspect of
numerical modeling. This process is usually named tun-
ing in the climate modeling community. In climate mod-
els, the variety and complexity of physical processes in-
volved, and their interplay through a wide range of spa-
tial and temporal scales, must be summarized in a series
of approximate sub-models. Most sub-models depend
on uncertain parameters. Tuning consists of adjusting the
values of these parameters to bring the solution as a whole
into line with aspects of the observed climate. Tuning is
an essential aspect of climate modeling with its own scien-
tific issues, which is probably not advertised enough out-
side the community of model developers. Optimization of
climate models raises important questions about whether
tuning methods a priori constrain the model results in un-
intended ways that would affect our confidence in climate
projections. Here we present the definition and ratio-
nale behind model tuning, review specific methodologi-
cal aspects, and survey the diversity of tuning approaches
used in current climate models. We also discuss the chal-
lenges and opportunities in applying so-called ‘objective‘
methods in climate model tuning. We discuss how tuning
methodologies may affect fundamental results of climate
models, such as climate sensitivity. The article concludes
with a series of recommendations to make the process of
climate model tuning more transparent.

Capsule Summary: We survey the rationale and di-
versity of approaches for tuning, a fundamental aspect
of climate modeling which should be more systemat-
ically documented and taken into account in multi-
model analysis.

1. Introduction

As is often the case in sciences that address complex
systems, numerical models have become central in cli-
mate science (Edwards 2001). General circulation mod-
els of the atmosphere were originally developed for nu-
merical weather forecasting (e. g. Phillips 1956). The
coupling of global atmospheric and oceanic models be-
gan with Manabe and Bryan (1969) and came of age in
the 80s and 90s. Global climate models or Earth System
Models (ESMs) are nowadays used extensively to study
climate changes caused by anthropogenic and natural per-
turbations (Lynch 2008; Edwards 2010). The evalua-
tion and improvement of these global models is the driver
of many theoretical and observational research. Publica-
tions that analyze the simulations coordinated at an in-
ternational level in the frame of the Coupled Model In-
tercomparison Project (CMIP) constitute a large part of
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the material synthesized in the IPCC Assessment Reports.
Beyond their use for prediction and projection at meteo-
rological to climatic timescales, global models play a key
role in climate science. They are used to understand and
assess the mechanisms at work while accounting for the
complexity of the climate system and for the spatial and
temporal scales involved (Dahan Dalmedico 2001; Held
2005).

The development of a climate model is a long-term
project. When releasing a new model or new version of
a model, a series of sub-models, sometimes developed or
improved over years in separate teams, are combined and
optimized together to produce a climate that matches some
key aspects of the observed climate. While the funda-
mental physics of climate is generally well established,
sub-models or parameterizations are approximate, either
because of numerical cost issues (limitations in grid res-
olution, acceleration of radiative transfer computation) or
more fundamentally because they try to summarize com-
plex and multi-scale processes through an idealized and
approximate representation. Each parameterization relies
on a set of internal equations and often depends on param-
eters, the values of which are often poorly constrained by
observations. The process of estimating these uncertain
parameters in order to reduce the mismatch between spe-
cific observations and model results is usually referred to
as tuning in the climate modeling community.

Climate model tuning is a complex process which
presents analogy with reaching harmony in music. Pro-
ducing a good symphony or rock concert requires first a
good composition and good musicians who work individ-
ually on their score. Then, when playing together, instru-
ments must be tuned, which is a well defined adjustment
of wave frequencies which can be done with the help of
electronic devices. But the orchestra harmony is reached
also by adjusting to a common tempo as well as by sub-
jective combinations of instruments, volume levels or mu-
sicians interpretations, which will depend on the intention
of the conductor or musicians. When gathering the various
pieces of a model to simulate the global climate, there are
also many scientific and technical issues, and tuning itself
can be defined as an objective process of parameter esti-
mation to fit a predefined set of observations, accounting
for their uncertainty, a process which can be engineered.
However, because of the complexity of the climate system
and of the choices and approximations made in each sub-
model, and because of priorities defined in each climate
center, there is also subjectivity in climate model tuning
(Tebaldi and Knutti 2007) as well as substantial know-how
from a limited number of people with vast experience with
a particular model. One goal of this paper is to make this
knowledge more explicit.

Choices and compromises made during the tuning ex-
ercise may significantly affect model results and influence
evaluations that measure a statistical ‘distance’ between
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the simulated and observed climate. In theory, tuning
should be taken into account in any evaluation, intercom-
parison or interpretation of the model results. Although
the need for parameter tuning was recognized in pioneer-
ing modeling work (e.g. Manabe and Wetherald 1975) and
discussed as an important aspect in epistemological stud-
ies of climate modeling (Edwards 2001), the importance
of tuning is probably not advertised as it should. It is of-
ten ignored when discussing the performances of climate
models in multi-model analyses. In fact, the tuning strat-
egy was not even part of the required documentation of the
CMIP5 simulations. In the best cases, the description of
the tuning strategy was available in the reference publica-
tions of the modeling groups (Mauritsen et al. 2012; Golaz
et al. 2013; Hourdin et al. 2013a,b; Schmidt et al. 2014).
Why such a lack of transparency ? Maybe because tuning
is often seen as an unavoidable but dirty part of climate
modeling; more engineering than science; an act of tin-
kering that does not merit recording in the scientific litera-
ture. There may also be some concern that explaining that
models are tuned, may strengthen the arguments of those
claiming to question the validity of climate change projec-
tions. Tuning may be seen indeed as an unspeakable way
to compensate for model errors.

The purpose of this paper is to help making the process
of model tuning more explicit and transparent. Tuning is
an intrinsic and fundamental part of climate modeling that
should be better documented and discussed as such in the
scientific literature. Tuning can be described as an op-
timization step and follows a scientific approach. Tuning
can provide important insights on climate mechanisms and
model uncertainties. Some biases in climate models can be
reduced or removed by tuning, while others remain stub-
bornly resistant. It is important to understand why if we
want to improve models. Below, we present a definition
of tuning, document current practices and methodologies,
and address emerging issues. We conclude with recom-
mendations on model tuning and its documentation.

2. Definition of climate model tuning

Model tuning or calibration is neither a new concept nor
specific to climate modeling. In statistical sciences, Fisher
introduced three steps in the process of modeling (Fisher
1922; Burnham and Anderson 2002): (i) model formula-
tion, (ii) parameter estimation, and (iii) estimation of un-
certainty. This categorization applies also to the wider
context of numerical modeling. It is conceptually useful
to discriminate between model formulation and parameter
estimation, even if this distinction is by no means clear-cut
in climate model tuning as explained below.

Climate model development is founded on well-
understood physics combined with a number of heuristic

process representations. The fluid motions in the atmo-
sphere and ocean are resolved by the so-called ‘dynam-
ical core’ down to a grid spacing of typically 25 to 300
km for global models, based on numerical formulations
of the equations of motion from fluid mechanics. Sub-
grid scale turbulent and convective motions must be rep-
resented through approximate sub-gridscale parameteriza-
tions (Smagorinsky 1963; Arakawa and Schubert 1974;
Edwards 2001). These sub-gridscale parameterizations
include coupling with thermodynamics, radiation, conti-
nental hydrology, and optionally chemistry, aerosol micro-
physics, or biology.

Parameterizations are often based on a mixed physi-
cal, phenomenological and statistical view. For exam-
ple, the cloud fraction needed to represent the mean ef-
fect of a field of clouds on radiation may be related to the
resolved humidity and temperature through an empirical
relationship. But the same cloud fraction can also be ob-
tained from a more elaborate description of processes gov-
erning cloud formation and evolution. For instance, for
an ensemble of cumulus clouds within an horizontal grid
cell, clouds can be represented with a single mean plume
of warm and moist air raising from the surface (Tiedtke
1989; Jam et al. 2013) or with an ensemble of such plumes
(Arakawa and Schubert 1974). Similar parameterizations
are needed for many components not amenable to first-
principle approaches at the grid scale of a global model,
including boundary layers, surface hydrology, ecosystem
dynamics, and so on. Each parameterization, in turn, typi-
cally depends on one or more parameters whose numerical
values are poorly constrained by first principles or obser-
vations at the grid scale of global models. Being approxi-
mate descriptions of unresolved processes, there exist dif-
ferent possibilities for the representation of many pro-
cesses. The development of competing approaches to dif-
ferent processes is one of the most active areas of climate
research. The diversity of possible approaches and param-
eter values is one of the main motivations for model inter-
comparison projects in which a strict protocol is shared
by various modeling groups in order to better isolate the
uncertainty in climate simulations that arises from the di-
versity of models (model uncertainty).

A model configuration is determined by two aspects, its
complexity and resolution. For global climate models or
ESMs, the configuration retained generally results from
compromises between resolution, complexity and length
and number of simulations. Different modeling groups
may have different priorities in terms of scientific ques-
tions and applications, thus making different judgments on
how to best balance finite resources. The choice of com-
plexity and resolution itself can be considered as tuning in
a wide sense, since it is often motivated by the ability of
the model to reproduce with some realism key aspects of
the climate system.
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Here we focus on the classical definition of tuning, that
corresponds to parameter estimation in Fisher’s terminol-
ogy. Once a model configuration is fixed, tuning consists
in choosing parameter values in such a way that a certain
measure of the deviation of the model output from se-
lected observations or theory is minimized or reduced to
an acceptable range. Defined this way, tuning is usually
called calibration in other application areas of complex nu-
merical models (Kennedy and O’Hagan 2001). Some cli-
mate modelers are reluctant to use this term however since
they know that, by adjusting parameters, they also com-
pensate, intentionally or not, for some (often unknown)
deficiencies in the model formulation itself.

Parameter tuning itself occurs at various levels that cor-
respond to stages of model development. An initial cali-
bration may be performed during the development phase
of a new parameterization, for instance using a single
column version of the climate model. Although desir-
able in principle, this parameterization tuning is often
difficult in practice because processes are strongly cou-
pled to each other and to the large-scale dynamics. At
the next stage, a number of parameterizations are tuned
together when assembled into components: atmosphere,
ocean, continental surface. This component tuning is per-
formed by using standalone components with boundary
conditions which would otherwise be provided by other
components. For example, an ocean model with imposed
surface wind stress, inputs of freshwater, precipitation and
radiation might be tuned to get sea surface temperatures
or meridional overturning circulation that match expecta-
tions. A system tuning is finally required to ensure consis-
tency across the full climate system once components are
coupled together.

3. Common practices and targets

Tuning of coupled earth system models generally fol-
lows a common practice but with targets and priorities
which may vary from group to group. This was con-
firmed by a poll conducted in August-September 2014
(See sidebar for results). Most of the major climate mod-
eling groups (23 model centers) submitted answers to a
questionnaire on why and how their models are tuned.

With the increasing diversity in the applications of cli-
mate models, the number of potential targets for tuning in-
creases. There are a variety of goals for specific problems,
and different models may be optimized to perform better
on a particular metric, related to specific goals, expertise
or cultural identity of a given modeling center. Groups
more focused on the European climate may give more im-
portance to the ocean heat transport in the North Atlantic
whereas others may be more concerned with tropical cli-
mate and convection. Some groups may put more weight
on metrics that measure the skill to reproduce the present-
day mean climatology or observed modes of variability,

1

FIG. 1. Example of tuning approach for the ECHaM model (af-
ter Mauritsen et al. 2012). The figure illustrates the major uncertain
climate-related cloud processes frequently used to tune the climate of
the ECHAM model. Stratiform liquid and ice clouds, and shallow and
deep convective clouds are represented. The grey curve to the left rep-
resents tropospheric temperatures and the dashed line is the top of the
boundary layer. Parameters are a) convective cloud mass-flux above the
level of non-buoyancy, b) shallow convective cloud lateral entrainment
rate, c) deep convective cloud lateral entrainment rate, d) convective
cloud water conversion rate to rain, e) liquid cloud homogeneity, f) liq-
uid cloud water conversion rate to rain, g) ice cloud homogeneity, and
h) ice particle fall velocity.

while others may privilege process-oriented metrics tar-
geting processes that are believed to dominate the climate
change response to anthropogenic forcing.

There is, however, a dominant shared target for coupled
climate models: the climate system should reach a mean
equilibrium temperature close to observations when en-
ergy received from the sun is close to its real value (' 340
W/m2). This energy source will be balanced by the energy
lost to space by reflected sunlight and thermal infrared ra-
diation if the model conserves energy numerically (which
can not always been imposed strictly). We know indeed
that the system is nearly in balance but for the ocean heat
uptake, believed to be of about 0.5 W/m2 in our warming
climate, a value much smaller than the model and obser-
vational uncertainties. This provides a strong large-scale
constraint.1

A common practice to fulfill this constraint is to ad-
just the top-of-atmosphere or surface2 energy balance in
atmosphere-only simulations exposed to observed sea sur-
face temperatures (component tuning) and check if the
temperature obtained in coupled models is realistic. This
energy balance tuning is crucial since a change by 1 W/m2

of the global energy balance produces typically a change

1Even observations of the radiative fluxes are in fact adjusted us-
ing this constraint. The CERES-EBAF data stands for ’energy balance
adjusted flux’.

2Top-of-atmosphere and surface energy balance should not differ if
exact energy conservation in the atmosphere is ensured, which turns out
not to be an easy task.
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FIG. 2. Example of tuning of the global top-of-atmosphere energy balance with a cloud parameter for the GFDL-CM3, MPI-ESM1.1 and two
versions A and B of the IPSL-CM5 model, that differ by the representation of the convective boundary layer, clouds and convection. a) Global
absorbed short-wave radiation (ASR, full curve) and outgoing radiation (OLR, dashed) at top-of-atmosphere. The horizontal axis corresponds to
the value of a scaling parameter in the ice crystal fall velocity equation, Eq. (5) of Heymsfield and Donner (1990) which is shared by the four
models. The simulations are run over several years with imposed sea surface temperature. The difference between the dashed and full curves gives
the global energy balance. The squares and diamonds correspond to default values retained after a tuning phase (for GFDL and IPSL-CM they
correspond to the values retained for CMIP5 but, because the experiments were redone with recent versions of the same models, the balance is
not completely satisfied with the selected values). For the IPSL models, we show how the tuning of the scaling parameter affects the latitudinal
variation of cloud radiative effect computed as the difference of total and clear-sky radiation, for both b) short-wave and c) long-wave radiation.
The thin curves correspond to the various values of the tuning parameter (the smaller the fall velocity the stronger the absolute cloud radiative
effect both in the long-wave and short-wave radiation) and the thick curves to the values retained after tuning. The observations correspond to the
CERES-EBAF L3b product for (Loeb et al. 2009). The height of the gray rectangle in a) and thickness of the gray curves in b) and c) correspond
to an observation uncertainty of ±4 W/m2. Note however that true error bars are not available for these observations

of about 0.5 to 1.5 K in the global mean surface temper-
ature in coupled simulations depending on the sensitivity
of the given model.

In general, the parameters are given some a priori val-
ues, and ideally a range around this value. This infor-
mation can come either from theory, from a back-of-the-
envelope estimate, from numerical experiments (tuning an
eddy-diffusion coefficient from explicit simulations of the
turbulent process) or from observations (a mean effective
cloud droplet for instance). Note that many internal pa-
rameters are not directly observable. Given this informa-
tion, a common practice is to adjust the most uncertain
parameters that significantly affect key climate metrics.
Indeed, all parameters are not known with the same ac-
curacy. There is fair consensus (see poll) that the most
uncertain parameters that affect the atmospheric radiation
are those entering in the parameterization of clouds and of
the albedo of the earth’s surface. Clouds exert a large net
cooling effect (about -20 W/m2), but this effect is uncer-
tain to within several W/m2 (Loeb et al. 2009). A 1 W/m2

change in cloud radiative effects is only a 5% variation of
the net cloud cooling effect, and 2% of the solar (or short-

wave) effect, well below observational and model uncer-
tainty (L’Ecuyer et al. 2015).

Most tuning parameters are specific to sub-model (pa-
rameterization) choices. Parameters controlling mixing of
convective clouds with the environment will depend on
the specific description of the convective vertical trans-
port. Parameters controlling the size distribution of cloud
droplets which will depend on the sophistication of the mi-
crophysics, et cetera. As an example, Fig 1 from Maurit-
sen et al. (2012) illustrates the various parameters which
are used for tuning in one particular model.

Some parameterizations and associated tuning parame-
ters are however shared by several models. We show in
Fig 2 how a scaling factor on the ice crystal fall velocity
(process h in Fig 1) is used to constrain both the global
short-wave and long-wave radiation to match observed
value of 240±4 W/m2, in climate models that share the
same formulation for the ice crystal fall velocity (Heyms-
field and Donner 1990). A larger fall velocity systemati-
cally reduces the amount of ice clouds and thus increases
both the absorbed short-wave radiation (reduced plane-
tary albedo) and outgoing long-wave radiation (reduced
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greenhouse effect). Beyond global values, tuning is some-
times applied to spatial variations of the radiative fluxes
like latitudinal dependency that drives the general circula-
tion or land-sea contrasts that drive monsoon circulations.
Fig 2b,c illustrates for two models how the same factor on
ice crystal fall velocity affects the latitudinal distribution
of absorbed solar radiation and outgoing long-wave radia-
tion.

After clouds, the most common tuning parameters are
those entering in the parameterizations of snow and sea-
ice albedo, ocean mixing and orographic drag. Soil and
vegetation properties are also sometimes used for tuning.

Because of the uncertainties in observations and in the
model formulation, the possible parameter choices are nu-
merous and will differ from one modeling group to an-
other. These choices should be more often considered in
model inter-comparison studies. The diversity of tuning
choices reflects the state of our current climate understand-
ing, observation and modeling. It is vital that this diversity
be maintained. It is however important that groups better
communicate their tuning strategy. In particular, when
comparing models on a given metric, either for model as-
sessment or for understanding of climate mechanisms, it
is essential to know whether some models used this metric
as tuning target.

4. Applying objective methods

There exists a considerable literature on parametric tun-
ing using objective approaches, developed in the statistics,
engineering and computer science communities. By ‘ob-
jective’ methods, one means that a well founded math-
ematical or statistical framework is used to perform the
model tuning, for instance by defining and minimizing a
cost function or by introducing a Bayesian formulation
of the calibration problem (Kennedy and O’Hagan 2001).
The use of objective methods does not, however, in any
way obviates the requirement for subjective judgment con-
cerning the priorities and targets of the tuning process. An
‘objective’ algorithm merely identifies those parts of the
procedure that require the subjective scientific expertise of
the modeler. It requires that the modeler formulates this
judgment in terms of numbers or mathematical formulas,
which can be sometimes quite demanding but which also
contributes to make the process of tuning more explicit
and reproducible. Objective methods then provide an au-
tomatic tuning procedure based on those judgments.

Broadly speaking, objective methods fall into one of
two categories. The first involves fast optimization of
some cost function measuring the distance of model sim-
ulations to a small collection of observations. Applica-
tions of such methods in climate science include Bellprat
et al. (2012); Yang et al. (2013); Zou et al. (2014); Zhang
et al. (2015). The second class of methods represents a

Bayesian approach and is now part of a class of meth-
ods under the banner of Uncertainty Quantification (UQ,
Kennedy and O’Hagan 2001). UQ, for parameter tuning,
aims to provide uncertainty for the parameters using a sta-
tistical model relating the climate model to observations
that explicitly quantifies the key sources of uncertainty
present in the problem: observational uncertainty, initial
condition uncertainty (internal variability) and structural
uncertainty (missing or incorrect physics). Applications of
these methods to climate models include Rougier (2007);
Jackson et al. (2008); Edwards et al. (2011); Williamson
et al. (2013). UQ methods for example were used to pro-
vide the UK Climate Projections (Murphy et al. 2009; Sex-
ton et al. 2012).

Both classes of objective methods (optimization and
UQ) share advantages over more arbitrary trial and error
approaches that focus on tuning only one or two parame-
ters at a time. For example, by perturbing multiple param-
eters simultaneously and systematically, automatic meth-
ods can overcome concerns that a local optimum for one
objective may not be a good solution for other objectives
and may not even be a global optimum for the tuning met-
ric (Qian et al. 2015; Williamson et al. 2015).

Both classes of methods also share some of the same
challenges. The main challenge is computational cost
of running the climate model with sufficient parame-
ter choices to explore the parameter space. For high-
resolution climate models (or even their components),
available supercomputing power and the time available be-
tween tuning cycles – typically on the order of one to a
few years between two model releases – limits even the
best equipped institutions.

To overcome these computational issues, statistical em-
ulators (also called meta-models) can be used. Developed
by statisticians since the late 1980s (Sacks et al. 1989;
Currin et al. 1991; Haylock and O’Hagan 1996), emula-
tors use small training ensembles to train statistical models
that can predict the climate model response very quickly
(Neelin et al. 2010), reporting a measure of uncertainty
(typically offering a full probability distribution for the cli-
mate model at any choice of the parameters). The emula-
tor uncertainty must be included in Bayesian UQ methods
for parameter tuning, though it is ignored in some appli-
cations of optimization methods with the emulator mean
function used directly.

For high resolution models and models with long spin
up time, running the model enough to build an emulator
represents a huge challenge. Ensembles of shorter simu-
lations to replace the traditional serial-in-time long-term
climatology simulations have been proposed (Wan et al.
2014) and the UQ literature has long proposed and demon-
strated the success of linked models of different resolu-
tion to build emulators. For example, Williamson et al.
(2012) built an emulator for the CMIP5 model HadCM3
using only 16 integrations and a large ensemble of the
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low-resolution version FAMOUS. This is an active area
of research in UQ.

A principal challenge for automatic tuning methods is
that tuning to a handful of metrics may risk achieving im-
proved performance in those metrics at the expense of un-
physical behavior in metrics or processes that were not
used in tuning, i.e., we get some things ‘right for the wrong
reasons’. This problem, known as over-fitting or over-
tuning, will arise as soon as a minimization or parameter
selection is done that does not properly account for the
observation and model structural uncertainties. It will also
arise when tuning to partial observations (i.e. not tuning
the whole state vector of the climate model), or over-fitting
data that is partly simply natural variability (Notz 2015).
Then tuning may be seen as an error compensation pro-
cess rather than as model callibration. Over-tuning can
also occur when tuning ‘by hand’, but blind trust in an au-
tomatic tool may be more risky in that it prevents from
exercising the part of the expert judgment which can not
easily be translated into objective functions, or expressed
mathematically as uncertainties.

Over-tuning is a real concern and the raison d’être for
Bayesian UQ methods. However, because the key sources
of uncertainty in the tuning problem, observation uncer-
tainty and structural error, are so poorly understood and
difficult to quantify, automatic tuning has a long way to go
before it is adopted routinely by the major modeling cen-
ters for CMIP integrations. A class of UQ methods that
explicitly avoid over-tuning, called history matching, have
recently been proposed for the climate model tuning com-
munity (Williamson et al. 2015). They avoid over-tuning
by changing the problem from one of searching for a sin-
gle best value of the parameters, to looking for unaccept-
able parameter values and ruling out the corresponding re-
gions of the parameter space iteratively.

5. Tuning and model improvement

Although tuning is an efficient way to reduce the dis-
tance between model and selected observations, it can
also risk masking fundamental problems and the need for
model improvements.

There is evidence that a number of model errors are
structural in nature and arise specifically from the approx-
imations in key parameterizations as well as their interac-
tions. For example, some models systematically underes-
timate rainfall over monsoon regions, whereas others will
do the opposite. Other biases are systematic across mod-
els, like the presence of a persistent double Pacific Inter-
tropical Convergence Zone (ITCZ), on both sides of the
equator, or warm biases over the Eastern tropical oceans.
Those model biases are indeed often resistant to model
tuning. Tuning a model to improve its performance on
a specific target also often degrades performance on other

metrics. For example, tuning a model to improve the intra-
seasonal variability of precipitation in the tropics often
comes at the cost of increased biases in the mean state
(Kim et al. 2012).

Introduction of a new parameterization or improvement
also often decreases the model skill on certain measures.
The pre-existing version of a model is generally optimized
by both tuning uncertain parameters and selecting model
combinations giving acceptable results, probably inducing
compensation errors (over-tuning). Improving one part of
the model may then make the ’skill’ relative to observa-
tions worse, even though it has a better formulation. The
stronger the previous tuning, the more difficult it will be
to demonstrate a positive impact from the model improve-
ment and to obtain an acceptable retuning. In that sense,
tuning (in case of over-tuning) may even slow down the
process of model improvement by preventing the incor-
poration of new and original ideas. This difficulty has
been known for decades in operational numerical weather
prediction centers and could be overcome by not over-
weighting climate performance metrics (the ones which
matter for the end users or for impact models) with respect
to process-oriented ones. Process-oriented metrics are in-
tended to help relate large-scale biases to the misrepresen-
tation of specific sub-grid scale processes. Process ori-
ented metrics include, for example: compositing cloud or
precipitation characteristics by dynamical regimes (Bony
et al. 2004), compositing relative humidity profiles based
on precipitation percentiles to assess the sensitivity of con-
vection schemes to relative humidity (Kim et al. 2014), or
evaluating simulated cloud microphysical properties (and
their co-variability) directly from satellite measurements
(Suzuki et al. 2013).

On another hand, tuning may highlight where further
model improvement is needed. If parameter values needed
to satisfy a given metric are outside the acceptable range,
or if different values are needed for different regions or
climate regimes, developers may consider revisiting the
formulation of the parameterization or develop new ones.
Then, the tuning process can be pushed back to a deeper
level inside the model while increasing the physical real-
ism of the model.

For clouds and convection, parameterization develop-
ment is often performed using single column versions of
the global model compared to explicit high resolution sim-
ulations of the processes which are parameterized, follow-
ing a strategy defined 20 years ago (see e. g. Ayotte et al.
1996; Liu et al. 2001). The explicit simulation gives ac-
cess to variables hardly accessible by observation (like 3D
fields of temperature and humidity or vertical velocities)
but also to estimation of parameters which have no ob-
servational counterpart (like entrainment and detrainment
rates between a mean bulk plume and its environment or a
mean fall velocity for ice crystals at the model grid scale).
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Such parameters can be derived by sampling and charac-
terizing the equivalent of the parameterized structures in
the explicit simulations, as done for example by Couvreux
et al. (2010) to derive mixing rates between a mean bulk
plume and its environment. The parameterization develop-
ment process can thus help constrain some parameters but
also propose physically-based sub-models for some oth-
ers.

One way to make the reduction of model large scale
biases and the parameterization development processes
more ”in tune” is by deriving an acceptable range of pa-
rameter values instead of a single value from the afore-
mentioned process studies and use this range when tun-
ing global simulations. To achieve this goal, UQ methods
could be applied to the single-column model using explicit
process simulations as a reference. It is important that the
representation of turbulence, microphysics and radiation
continue to be improved in explicit high resolution sim-
ulations, so that the parametrization can be evaluated not
only in terms of subgrid-scale dynamics (as usually done
so far) but also in terms of radiative effect of clouds.

Another emerging approach consists in using initialized
or nudged simulations (Zhang et al. 2014) in the tuning
process. In nudged simulations the model is forced to fol-
low the observed trajectory by relaxing winds and also op-
tionally temperature and humidity, toward meteorological
analysis, with a time constant of typically a few hours.
With initialized or nudged simulations, the simulated and
observed meteorology follow the same trajectory and the
comparison with observations can be done on a day-by-
day basis. Wind-only nudging allows separation of pa-
rameterization tuning for a given meteorological situation
(as is done in 1D mode) from that of the coupling of pa-
rameterization with large scale dynamics. Nudging with
short enough time constants (typically of a few hours) re-
moves the chaotic nature of the atmospheric large scale
circulation, and slow feedbacks of that circulation on fast
processes (such as clouds). Nudged or initialized simula-
tions may also help accelerate tuning for high resolution
climate models.

Whatever the approach, there is a need for relying more
on observational studies at the process-scale to tune the
radiative budget in a more physical way. Progress will
be made by further incorporating model tuning as an un-
certainty analysis into the parameterization development
process.

6. Tuning to 20th century warming ?

The increase of about one Kelvin of the global mean
temperature observed from the beginning of the industrial
era, hereafter 20th century warming, is a de facto litmus
test for climate models (Mauritsen et al. 2012). However,
as a test of model quality, it is not without issues because

the desired result is known to model developers and there-
fore becomes a potential target of the development.

The amplitude of the 20th century warming depends
primarily on the magnitude of the radiative forcing, the
climate sensitivity, as well as the efficiency of ocean heat
uptake. By linearizing about a basic stationary climatic
state, the global mean temperature change for a gradually
increasing forcing can be approximated as:

∆T ≈ F
κ−λ

(1)

where T denotes global mean surface temperature, F an
imposed radiative forcing, κ the deep ocean heat up-
take efficiency, and λ is the feedback parameter which
is inversely proportional to equilibrium climate sensitiv-
ity (ECS ≈ −F/λ ). Climate models have values of λ
that range from -0.6 to -1.8 Wm−2/K and κ from approxi-
mately 0.5 to 1.2 Wm−2/K. On average, in models the de-
nominator (κ −λ ) is about 2 Wm−2/K and in year 2003
forcing is around 1.7 Wm−2 (Forster et al. 2013).

The often deployed paradigm of climate change pro-
jection is that climate models are developed using theory
and present-day observations, whereas ECS is an emer-
gent property of the model and the matching of the 20th
century warming constituting an a posteriori model eval-
uation. Some modeling groups claim not to tune their
models against 20th century warming, however, even for
model developers it is difficult to ensure that this is abso-
lutely true in practice because of the complexity and his-
torical dimension of model development.

The reality of this paradigm is questioned by findings
of Kiehl (2007) who discovered the existence of an anti-
correlation between total radiative forcing and climate
sensitivity in CMIP3 models: High sensitivity models
were found to have a smaller total forcing and low sensitiv-
ity models a larger forcing, yielding less cross-ensemble
variation of historical warming than otherwise to be ex-
pected. Even if alternate explanations have been proposed
and even if the results were not so straightforward for
CMIP5 (cf. Forster et al. 2013), it could suggest that some
models may have been inadvertently or intentionally tuned
to the 20th century warming.

There is a broad spectrum of methods to improve model
match to 20th century warming, ranging from simply
choosing to no longer modify the value of a sensitive pa-
rameter when a match is already good for a given model
(Mauritsen et al. 2012), or selecting physical parameteri-
zations that improve the match, to explicitly tuning either
forcing or feedback both of which are uncertain and de-
pend critically on tunable parameters (Murphy et al. 2004;
Golaz et al. 2013). Model selection could, for instance,
consist of choosing to include or leave out new processes,
such as aerosol-cloud interactions, to help the model better
match the historical warming, or choosing to work on or
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FIG. 3. Simulations of the 20th century temperature with the CMIP5
model Ensemble (grey curves). Each curve corresponds to a 5-year run-
ning mean of the anomaly of the global mean temperature at 2m above
surface. The anomaly is computed using as a reference period years
1850-1899. The black curve corresponds to the version 4 of the Had-
CRUT observations. The colored curves correspond to 3 configura-
tions of the GFDL-CM3 model. CM3 denotes the CMIP5 model, while
CM3c and CM3w denote alternate configurations with larger, respec-
tively smaller, cooling from cloud aerosol interactions.

replace a parameterization that is suspect of causing a per-
ceived unrealistically low or high forcing or climate sensi-
tivity.

An illustration of 20th century tuning with the GFDL-
CM3 model is shown in Fig 3. The model (green) pro-
duces a relatively weak warming over the 20th century due
to a strong cooling effect from aerosol-cloud interactions.
Sensitivity tests, which were performed after the model
was frozen, showed that it is possible to reduce this effect
and thereby obtain a more realistic warming. However,
this was achieved by lowering the threshold size for the
conversion of cloud droplets to rain to values smaller than
supported by observations (Golaz et al. 2013; Suzuki et al.
2013, and references therein).

Adjusting the 20th century warming would in principle
require a series of multi-century simulations with the cou-
pled ocean-atmosphere model, because of the long spin-up
of the ocean state required before starting transient 20th
century simulations. However, it has long been known
that short atmospheric simulations can be used to estimate
either adjusted forcing when forced with perturbed atmo-
spheric composition (Hansen et al. 2005) or ECS when
forced with perturbed sea surface temperature (Cess et al.
1989; Gettelman et al. 2012). Thereby it is possible to tar-
get specific values of F and λ thought to provide a good
match to historical warming based on experience with pre-
vious model versions.

Any ECS tuning would need to take into account three
main sources of uncertainties. First as usual, the uncer-
tainty of the observation of the global mean surface tem-
perature should not be forgotten even if it is believed
today to be much smaller than the inter model disper-
sion. Then the radiative forcing F itself is uncertain. It
is composed of a fairly well-known greenhouse gas forc-
ing which is partly compensated by an uncertain aerosol

forcing, and modified by a series of other less important
forcing agents. Tuning of the 20th century could for in-
stance be obtained with an overly large ECS balancing an
overly strong aerosol radiative forcing. In such a case,
and because the effect of greenhouse gases will dominate
in the future, this would result in an overestimate of fu-
ture global warming. The third important source of uncer-
tainty comes from the internal climate variability which
can cause variations among realizations with different ini-
tial conditions of typically ±0.1 K to centennial warming;
and since the observed only represents one such realiza-
tion a model need not be closer than this to match the
target. Trying to match the 20th century global warm-
ing without accounting for sources of uncertainty would
inevitably lead to over-tuning.

The question whether the 20th century warming should
be considered a target of model development or an emer-
gent property is polarizing the climate modeling commu-
nity, with 35 percent of modelers stating that 20th century
warming was rated very important to decisive, whereas 30
percent would not consider it at all during development.
Some view the temperature record as an independent eval-
uation data set not to be used, while others view it as a
valuable observational constraint on the model develop-
ment. Likewise, opinions diverge as to which measures,
either forcing or ECS, are legitimate means for improving
the model match to observed warming. The question of
developing towards the 20th century warming therefore is
an area of vigorous debate within the community.

However, the capability to control the modeled 20th
century warming also offers new opportunities to explore
the bounds of modeled climate sensitivity (Golaz et al.
2013): By combining altered ECS and aerosol forcing it
is technically possible to construct outlier low- and high-
sensitivity models that match the observed warming. Eval-
uating such models with other observed aspects, such as
mid-century warming or modes of variability, and running
them in pre-historic climates such as the last glacial maxi-
mum or the Pliocene, could potentially allow us to rule out
extreme values of ECS and/or aerosol forcing.

The fact that some models are explicitly, or implicitly,
tuned to better match the 20th century warming, while oth-
ers may not be, clearly complicates the interpretation of
the results of combined model ensembles such as CMIP.
The diversity of approaches is unavoidable as individual
modeling centers pursue their model development to seek
their specific scientific goals. It is, however, essential
that decisions affecting forcing or feedback made during
model development be transparently documented.

7. Conclusions, implications and recommendations

There was a debate among authors on the idea of us-
ing the word ”art” in the title of the paper. Tuning is
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seen by some modelers more as a pure engineering cali-
bration exercise, which consists in applying objective or
automatic tools, based on purely scientific considerations.
Others see it as an experienced craftsmanship or as an art
”a skill that is attained by study, practice, or observation”
3. As in art, there is also some diversity and subjectiv-
ity in the tuning process because of the complexity of the
climate system, and because of the choices made among
the equally possible representations of the system. It is
essential to maintain this diversity in model approaches
and tuning because of the approximate nature of models,
the lack of observational counterparts for many internal
model parameters, and the importance of climate change
predictions, for which no observation exist.

This subjectivity does not contradict the fundamental
and two-fold scientific nature of climate tuning. On one
side, the tuning process involves many scientific issues
like the physical understanding of the phenomena to be
modeled, algorithmic formulation of physical laws, math-
ematical basis of optimization, the statistics of internal
variability. In turn, the understanding of climate mecha-
nisms can be inspired by the act of tuning which is based
intrinsically on a large exploration of possible climates
through sensitivity experiments. It allows us to identify
and understand the role of the various modeled processes
and feedbacks involved. Tuning may also help identify
model structural errors, for instance if the optimal value of
a parameter falls outside the acceptable range, or if differ-
ent values of the same parameter are optimal for different
situations. In this sense, tuning is a form of uncertainty
analysis.

Because tuning will affect the behavior of a climate
model, and the confidence that can be given to a partic-
ular use of that model, it is important to document the tun-
ing portion of the model development process. We recom-
mend that for the next CMIP6 exercise, modeling groups
provide a specific document on their tuning strategy and
targets, that would be referenced to when accessing the
dataset. We recommend distinguishing three levels in the
tuning process: individual parameterization tuning, com-
ponent tuning and climate system tuning. At the compo-
nent level, emphasis should be put on the relative weight
given to climate performance metrics versus process ori-
ented ones, and on the possible conflicts with parameter-
ization level tuning. For the climate system tuning, par-
ticular emphasis should be put on the way energy balance
was obtained in the full system: was it done by tuning the
various components independently, or was some final tun-
ing needed? The degree to which the observed trend of
the 20th century was used or not for tuning should also be
described. Comparisons against observations, and adjust-
ment of forcing or feedback processes should be noted. At
each step, any occasion where a team had to struggle with

3https://www.ahdictionary.com/word/search.html?q=art
[www.ahdictionary.com]

a parameter value or push it to its limits to solve a particu-
lar model deficiency should be emphasized. This informa-
tion may well be scientifically valuable as a record of the
uncertainty of a model formulation.

It would also be valuable to produce and document two
or more versions of the same model which would differ
only by their tuning. One can imagine changing a param-
eter which is known to affect the sensitivity, keeping both
this parameter and the ECS in the anticipated acceptable
range, and retuning the model otherwise with the same
strategy toward the same targets.

Finally, development of new methodologies is strongly
encouraged. Some of the most promising ideas include (1)
the systematic use of single column versus explicit simu-
lations approach for parameterization tuning, (2) the use
of process oriented metrics and (3) nudged simulations to
fill the gap between parameterization and component tun-
ing. The systematic use of objective methods at the pro-
cess level in order to estimate the range of acceptable pa-
rameters values for tuning at the upper levels is probably
one strategy which should be encouraged and may help
make the process of model tuning more transparent and
tractable.

There is a legitimate question on whether tuning should
be performed preferentially at the process level, and the
global radiative budget and other climate metrics used for
a posteriori evaluation of the model performance. It could
be a good way to evaluate our current degree of under-
standing of the climate system and to estimate the full un-
certainty in the ECS. Restricting adjustment to the pro-
cess level may also be a good way to avoid compensating
model structural errors in the tuning procedure. However,
because of the multi-application nature of climate mod-
els, because of consistency issues across the model and
its components, because of the limitations of process stud-
ies metrics (sampling issues, lack of energy constraints),
and also simply because the climate system itself is not
observed with sufficient fidelity to fully constrain models,
an a posteriori adjustment will probably remain necessary
for a while. This is especially important for the global en-
ergy constraints that are a strong and fundamental aspect
of global climate models. Adjustment will be done usually
by tuning the most uncertain parameters involved in the
representation of processes that most affect radiation such
as cirrus clouds or low clouds within acceptable ranges.
Tuning will probably induce some compensation of short-
comings or errors in the model parameterizations or con-
figuration. However this error compensation is probably
unavoidable and desirable for current models, due to the
importance of the energetic tuning for a reasonable simu-
lation of most aspects of the climate system. The level of
accuracy required for the global energy tuning (of a few
tenths of W/m2) is for instance smaller than the error aris-
ing from not computing radiation at every time-step, as
often done to save computational means (of the order of
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several W/m2, see e. g. Balaji et al. 2016). It is recom-
mended however to ensure that the final global tuning is
not obtained for a set of parameter values which would
not be acceptable in terms of process studies and process
oriented metrics.

The use of objective methods could also be promoted at
all the stages of model tuning, in order to render the pro-
cess more efficient. However, objective tuning approaches
should be used with caution. Because of the approximate
nature of models and because of observations uncertain-
ties, it is impossible to retain one unique parameter set as
an objective criteria. Formalizing the question of tuning
addresses an important concern: it is essential to explore
the uncertainty coming both from model structural errors,
by favoring the existence of tens of models, and from pa-
rameter uncertainties by not over-tuning. Either reducing
the number of models or over-tuning, especially if an ex-
plicit or implicit consensus emerges in the community on
a particular combination of metrics, would artificially re-
duce the dispersion of climate simulations. It would not
reduce the uncertainty, but only hide it.

We end by expressing the hope that this article will en-
courage both a systematic effort by the community to doc-
ument this arcane aspect of model construction, and for
more people to join a vigorous debate on model tuning
and evaluation.
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APPENDIX

A1. SIDEBAR : How do modeling centers tune their
models?

A survey was conducted in August-September 2014,
polling 23 different modeling centers that develop cou-
pled atmosphere and ocean models to find out how they
tune models. Most centers had a number of people discuss
the answers before submission (one answer per group).

The full results can be found in the Supplementary Ma-
terial. 22 of 23 groups reported adjusting model param-
eters to achieve desired properties such as radiation bal-
ance at the top of the atmosphere. Percentages are reported
based on the fraction of respondents. 83% of centers use
atmosphere & land only (fixed sea surface temperatures
or a ’data-ocean’) to adjust parameters, and 44% use sin-
gle column models. 74% perform their adjustment with a
pre-industrial (1850) coupled atmosphere-ocean configu-
ration. 39% use coupled present day simulations. Many
groups also adjust ocean (48%) and land (39%) model
parameters using stand alone configurations. In addition,
21% use historical 20th century simulations, and 17% use
slab ocean models.

The goals of tuning are fairly uniform. Groups were
asked about 26 different metrics: a wide variety. About
one third (8 of 26) of the metrics were rated as decisive
or very important by at least one third (35%) of model-
ing centers. However, there was lots of agreement in the
decisive (most important) metrics: global net top of at-
mosphere flux (69%) and then global mean surface tem-
perature (26%). Based on these goals of tuning, there
are a number of different parameterizations adjusted to
achieve them. Since tuning is generally focused on the
top of atmosphere and surface radiation balance, the most
common properties adjusted are uncertain cloud proper-
ties, and then properties that affect surface albedo. 29%
adjusted every parameterization asked about occasionally
or frequently. The most common parameterizations fre-
quently adjusted are clouds in the atmosphere, including
cloud microphysics (65%), convection (52%) and cloud
fraction (52%). The most common ’occasionally’ adjusted
parameters were snow (79%) and sea ice (57%) albedo,
along with ocean mixing (57%), orographic drag (57%)
and cloud optical properties (48%). Soil (43%) and veg-
etation (39%) properties were also adjusted. These ad-
justments are consistent with the feeling that atmospheric
cloud physics and atmospheric convection were thought
most likely to introduce biases in the model, with ocean
physics and mixing third.

Finally, groups were asked whether different tuning
practices were ’eligible’ (justified) on a 5 point scale of
disagree, somewhat disagree, neutral, somewhat agree,
agree. All groups agreed or somewhat agreed that tun-
ing was justified. 91% thought that tuning global mean
temperature or the global radiation balance was justified
(agreed or somewhat agreed). Given that these were
groups attending a meeting on the subject, there is a self-
selection bias. Using the same top 2 categories as register-
ing agreement the following were considered acceptable
for tuning by over half the respondents: atmospheric cir-
culation (74%), sea ice volume or extent (70%), as well as
cloud radiative effects by regime and tuning for variability
(both 52%).
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Supplemental Material: to the BAMS paper on ”The art and science of climate model tun-
ing”.

This supplementary Material presents the results of a survey organized in 2014, in preparation
of the WCRP meeting on model tuning hold in Garmisch-Partenkirchen, Germany, in October
2014. 23 modeling groups involved in the Couple Model Intercomparison Project did contribute
to the survey. The survey was organized on line using the ”SurveyMonkey” web site. The results
are given in figures and tables below. The questions are reproduced as they were presented on the
survey web site. The number of groups is given inside ( ) together with the percentage relative to
the groups that answered the given question.

For which purposes is your model being developed? Check all relevant boxes.

FIG. S1. For which purpose is your model being developed

Answer Choices Responses
Earth System modeling (e.g. including carbon cycle) 87% (20)
Global coupled atmosphere-ocean climate modeling 91% (21)
Global atmosphere-only climate modeling 65% (15)
Global ocean-only climate modeling 30% (7)
Numerical weather prediction 4% (1)
Regional climate modeling 30% (7)
Idealized model studies 43% (10)
Other 22% (5)

TAB. S1. For which purpose is your model being developed, full results
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Is your model being tuned by adjusting model parameters to obtain certain desired proper-
ties, e.g. radiation balance?

FIG. S2. Is your model being tuned ?

Answer Choices Responses
Yes 96% (22)
No 4% (1)

TAB. S2. Is your model being tuned ? Full results

In what mode(s) is your model being tuned?

FIG. S3. In what modes is your model being tuned ?

Answer Choices Responses
Atmosphere-Land (AMIP) 83% (19)
Ocean standalone (OMIP) 48% (11)
Weather forecasting assimilation cycles (NWP) 4% (1)
Land standalone 39% (9)
Coupled pre-industrial 74% (17)
Coupled present-day 39% (9)
Coupled 20th Century (historical) 22% (5)
Mixed layer/slab ocean 17% (4)
Abruptly increased CO2 (abrupt4xCO2) 4% (1)
1 percent per year CO2 (1pctCO2) 4% (1)
Cess-experiments, (AMIP+4K) 9% (2)
Nudged to observations 13% (3)
Transpose AMIP 17% (4)
Limited-area 0% (0)
Single column 43% (10)
It is not tuned 0% (0)
Other (please specify) 13% (3)

TAB. S3. In what modes is your model being tuned ? Full results
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In which parameterizations do you apply changes when tuning your model, and how much?

FIG. S4. In which parameterizations do you apply changes ?

Not Frequently
used Occasionally used Total Average

1 2 3 Rating (/3)
Cloud micro- physical processes,
e.g. droplet number concentration, 17% (4) 17% (4) 65% (15) 23 2.48
conversion rates, fall velocities
Convection, e.g.
entrainment rate, 13% (3) 35% (8) 52% (12) 23 2.39
conversion to precipitation
Cloud fraction,
e.g.critical RH threshold or 17% (4) 30% (7) 52% (12) 23 2.35
assumptions about PDFs
Cloud optical properties,
e.g. sub-grid 39% (9) 48% (11) 13% (3) 23 1.74
inhomogeneity
Turbulent mixing,
e.g. mixing length, 48% (11) 39% (9) 13% (3) 23 1.65
explicit top entrainment
Orographics drag 35% (8) 57% (13) 9% (2) 23 1.74
Ocean physical 26% (6) 57% (13) 17% (4) 23 1.91
properties, e.g. mixing, optics
Soil and run- off properties 52% (12) 43% (10) 4% (1) 23 1.52
Vegetation properties 52% (12) 39% (9) 9% (2) 23 1.57
Snow albedo 22% (5) 70% (16) 9% (2) 23 1.87
Sea ice albedo including meltponds 26% (6) 57% (13) 17% (4) 23 1.91
Sea ice rheology 74% (17) 26% (6) 0% (0) 23 1.26

TAB. S4. In which parameterizations do you apply changes ? Full results
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What metrics of the state and variability are specifically used in the model tuning process,
and how are they weighted in cases where compromises needs to be made?

FIG. S5. What metrics are used ? Average rating
Not Less Important Very Decisive Average

considered important important Total Rating
1 2 3 4 5 (/5)

Global mean TOA net flux 4% (1) 0% (0) 4% (1) 22% (5) 70% (16) 23 4.52
Global mean surface net flux 17% (4) 22% (5) 22% (5) 35% (8) 4% (1) 23 2.87
Global mean surface albedo 26% (6) 39% (9) 22% (5) 13% (3) 0% (0) 23 2.22
Global mean OLR 9% (2) 13% (3) 43% (10) 22% (5) 13% (3) 23 3.17
Global mean surface temperature 4% (1) 4% (1) 26% (6) 39% (9) 26% (6) 23 3.78
Global mean precipitation 13% (3) 39% (9) 22% (5) 26% (6) 0% (0) 23 2.61
Regional surf. temperature biases 9% (2) 22% (5) 48% (11) 22% (5) 0% (0) 23 2.83
Regional patterns of precip. 9% (2) 26% (6) 26% (6) 39% (9) 0% (0) 23 2.96
Aerosols, if applicable 30% (7) 13% (3) 48% (11) 9% (2) 0% (0) 23 2.35
Global carbon cycle, if applicable 35% (8) 22% (5) 17% (4) 22% (5) 4% (1) 23 2.39
Regional vegetation, if applicable 52% (12) 17% (4) 26% (6) 4% (1) 0% (0) 23 1.83
Climate sensitivity 43% (10) 17% (4) 26% (6) 13% (3) 0% (0) 23 2.09
Aerosol direct forcing 30% (7) 22% (5) 43% (10) 4% (1) 0% (0) 23 2.22
Aerosol indirect effects 35% (8) 13% (3) 26% (6) 26% (6) 0% (0) 23 2.43
20th Century warming 30% (7) 17% (4) 17% (4) 22% (5) 13% (3) 23 2.70
Response to volcanoes 39% (9) 35% (8) 17% (4) 9% (2) 0% (0) 23 1.96
ENSO variability 22% (5) 17% (4) 26% (6) 17% (4) 17% (4) 23 2.91
Intra- seasonal variability 30% (7) 30% (7) 30% (7) 4% (1) 4% (1) 23 2.22
Interannual variability 30% (7) 35% (8) 17% (4) 17% (4) 0% (0) 23 2.22
Decadal variability 35% (8) 43% (10) 9% (2) 13% (3) 0% (0) 23 2.00
Volcanic responses 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0 1.00
Monsoon rainfall 22% (5) 39% (9) 30% (7) 9% (2) 0% (0) 23 2.26
Ocean merid. overturn. circul. 13% (3) 13% (3) 13% (3) 48% (11) 13% (3) 23 3.35
Snow cover 39% (9) 26% (6) 30% (7) 4% (1) 0% (0) 23 2.00
Sea ice extent 13% (3) 13% (3) 17% (4) 48% (11) 9% (2) 23 3.26
Sea ice volume 13% (3) 35% (8) 26% (6) 26% (6) 0% (0) 23 2.65

TAB. S5. What metrics are used ? Full results
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Which processes do you believe introduce the largest biases in your coupled model? Please
rank from 1 to 5 with higher numbers indicating larger biases.

FIG. S6. Which processes do you believe introduce the largest biases ? Average Rating

Average
1 2 3 4 5 Total Rating (/5)

Atmospheric dynamics,
including model 4% (1) 13% (3) 35% (8) 30% (7) 17% (4) 23 3.43
resolution
Atmospheric cloud physics 4% (1) 0% (0) 9% (2) 43% (10) 43% (10) 23 4.22
Atmospheric convection 0% (0) 0% (0) 22% (5) 35% (8) 43% (10) 23 4.22
Atmospheric radiation 13% (3) 26% (6) 30% (7) 26% (6) 4% (1) 23 2.83
Atmospheric turbulence 9% (2) 30% (7) 35% (8) 26% (6) 0% (0) 23 2.78
Orographic drag 17% (4) 26% (6) 52% (12) 4% (1) 0% (0) 23 2.43
Land physics 4% (1) 35% (8) 35% (8) 17% (4) 9% (2) 23 2.91
Vegetation physics 22% (5) 30% (7) 30% (7) 9% (2) 9% (2) 23 2.52
Ocean dynamics 4% (1) 26% (6) 52% (12) 9% (2) 9% (2) 23 2.91
Ocean physics/mixing 0% (0) 4% (1) 48% (11) 35% (8) 13% (3) 23 3.57
Ocean biology 39% (9) 35% (8) 22% (5) 0% (0) 4% (1) 23 1.96
Sea ice dynamics 4% (1) 43% (10) 35% (8) 17% (4) 0% (0) 23 2.65
Sea ice physics 0% (0) 35% (8) 39% (9) 22% (5) 4% (1) 23 2.96

TAB. S6. Which processes do you believe introduce the largest biases ? Full results
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Please evaluate whether you agree that the following practices are eligible:

FIG. S7. Which practices you see as eligible ? Average Rating

Neither
Somewhat Disagree Somewhat Average

Disagree disagree Nor Agree agree Agree Total Average
1 2 3 4 5 Rating (/5)

Climate model
tuning in general 0% (0) 0% (0) 0% (0) 17% (4) 83% (19) 23 4.83
Tuning global
mean temperature 0% (0) 0% (0) 9% (2) 39% (9) 52% (12) 23 4.43
Tuning the global
radiation balance 0% (0) 0% (0) 9% (2) 9% (2) 83% (19) 23 4.74
Tuning the cloud
radiative effects by 9% (2) 13% (3) 26% (6) 22% (5) 30% (7) 23 3.52
regime or spatially
Tuning sea ice
volume and/or extent 4% (1) 0% (0) 26% (6) 26% (6) 43% (10) 23 4.04
Tuning the circulation,
e.g. by gravity wave 0% (0) 4% (1) 22% (5) 35% (8) 39% (9) 23 4.09
drag or turbulence
Tuning model
sensitivity, e.g. to match 9% (2) 35% (8) 22% (5) 17% (4) 17% (4) 23 3.00
20th Century warming
Tuning model forcing, e.g.
aerosol indirect effects, in 13% (3) 17% (4) 26% (6) 26% (6) 17% (4) 23 3.17
order to match 20th
Century warming
Tuning ocean heat
uptake, e.g. to match 13% (3) 26% (6) 35% (8) 13% (3) 13% (3) 23 2.87
20th Century warming
Tuning variability,
e.g. ENSO, MJO or 0% (0) 17% (4) 30% (7) 26% (6) 26% (6) 23 3.61
decadal variability
Automatic tuning 4% (1) 13% (3) 57% (13) 9% (2) 17% (4) 23 3.22
Applying flux-corrections 52% (12) 17% (4) 17% (4) 4% (1) 9% (2) 23 2.00

TAB. S7. Which practices you see as eligible ? Full results
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