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3)Non orographic gravity wave sources and breaking
a)Hydrostatic waves equations and sources

The Hydrostatic approximation, as the Boussinesq equations permits to filter
sound waves. 

Advantages:
In log-pressure coordinate the Hydrostatic equs look almost incompresible.
They easily permit to include the decrease with altitude  of air density.

Defect:
Not suitable to describe trapped waves, KH instabilities...
Problem to represent the lower boundary 

There has been a lot of research to find Eqs. that keep  the advantages of 
both approximation, yielding to the anelastic equations.

Today, this will concerns more the theoretical studies, since more and more models
treat the full compressible equations     



  

3)Non orographic gravity wave sources and breaking
a)Hydrostatic waves equations and sources

Tangent f-plane geometry
No beta effect (f=cte)

Log pressure coordinate: z=H ln 
pr

p


H=
RT r

g
=7km middle atmosphere

 representative
Charcateristic Height:

Density function: 0 z =r exp−z /H 

Du
Dt

− f v=−
∂
∂ x

G x

Dv
Dt

 f u=−
∂
∂ y

G y

0=−
∂
∂ z


RT
H

∂ xu∂ y v
1
0

∂z 0w=0

Dz

Dt

z

H
w=J

Equations:

Φ Is the potential,
D
Dt

=∂tu∂ xv∂ yw∂ z

w=
Dz
Dt

and



  

3)Non orographic gravity wave sources and breaking
a)Hydrostatic waves equations and sources

∂tu '∂ x '=0
∂t v '∂ y '=0
∂t ' zN2 w '=0

∂ xu '∂y v '0
−1∂ z0 w'=O

Pure Gravity waves (3D, N2=cte, u0=0, f=0)

Linearized equations: N 2=0zz

H

0Z

Brunt Vaisala frequency:

Looking for monochromatic solutions (the total solution can be reconstructed from them by
Fourier series):

u '=ℜ  u ei kxlymz− t ez /2H
We can take k>0 without lost of generality
Note the exponential growth with altitude of
the solution

Dispersion relation Phase velocity

Group velocity
=±N  k 2l 2

m2
1

4H 2

c= 

∣k∣2
k l m 

cg=
∇ l = k

k 2 l2
l

k2l 2

−m
m 21 /4H2

Remarks  c and cg are almost perpendicular:

Cgz >0 implies mω<0
Upward propagation:



  

3)Non orographic gravity wave sources and breaking
a)Hydrostatic waves equations and sources

∂tu '− f v '∂ x '=0
∂t v ' fu '∂ y '=0
∂t ' zN2 w '=0

∂ xu '∂y v '0
−1∂ z0 w'=O

Pure Inertio Gravity waves (3D, N2=cte, u0=0, f#0)

Linearized equations:

Dispersion relation

m2=
N 2 k 2l2
2− f 2 −

1
4H2

Only the waves with ω>f 
propagates vertically

Source 1 (fronts):
High res soundings somewhere 

 above a front! Geostrophic Adjustment?

Raw data filtered

For ω~f, v~-iu, (both are in quadrature)

mω<0 (upward propagation) makes that 

u (solid) is in advance on v (dashed)



  

3)Non orographic gravity wave sources and breaking
a)Hydrostatic waves equations and sources

Ley and Peltier 78, Gall et al 88, 
Gardner 89, Snyder et al 93, Reeder 
and Griffiths 96, Griffiths and Reeder 
96

Fundamental difficulty: dynamical separation
between balance and GW (slow quasi-manifold)
Idealized numerical studies
- 2D frontogenesis

- 3D baroclinic life cycles
Van Tuyl and Young 82, O'Sullivan & 
Dunkerton 95, Bush, McWilliams & Peltier 
95, Zhang 04, Viudez and Dritschel 06

Small-scale waves
in Jet exit region

Source 1 (fronts):



  

3)Non orographic gravity wave sources and breaking
a)Hydrostatic waves equations and sources

Source 1 (fronts):

Plougonven, Teitelbaum & Zeitlin 
03

z

u'
,v
'

Low frequency, large amplitude wave emitted from 
the upper-tropospheric jet, in jet exit region:

Wind speed at 
9km

jet radiosoundin
gGW

H
ei

gh
t i

n 
km

Vertical profile from a 
radiosounding



  

3)Non orographic gravity wave sources and breaking
a)Hydrostatic waves equations and sources

Source 2: Mountains

Boundary condition

As mountains impose ω=0, it is the
presence of an incident wind that permits

an oscillatory behaviour.

w '=u 0⋅∇ h

It also permits vertical propagation:

m 2=
N 2 k2

2
−

1
4 H 2

(f=0 for simplicity)

The intrinsic frequency is:

=−k⋅u0



  

3)Non orographic gravity wave sources and breaking
a)Hydrostatic waves equations and sources

Source 3: Convection

A diabatic heating stationnary in space
but fluctuating in time produces non-stationnary
waves in different directions of propagation.

Very simple Heuristic example of heating at a
Given altitude:

J x , t =
J 0

2
cos kx− t 

J 0

2
cos kx t 

f x =J 0 cos kx , g t =cos tIf:

J x , t = f x g t 

The heating produce waves in both directions
of propagation

Gravity waves above
a convective cloud

(Alexander et Holton 1997)



  

3)Non orographic gravity wave sources and breaking
b)Wave-mean flow interactions

Wave-mean flow separation in the 2D-periodic case
(again a purely formal approximation used here that facilitates the math.
The domain can be a model gridbox, and we assume that the waves stay in it)

u x , z , t =u  z , t u '  x , z , t 
w x , z , t =w ' x , z , t 

T x , z , t =T  z , t T ' x , z , t 

Mean flow equations (2d order):

∂
∂ t 

u= 1
0

∂
∂ z

−0u ' w ' G x

∂
∂ t

z=
1
O

∂
∂ z

−0w '  ' zJ

Remember:
z=

RT
H

a=
1

2X∫−X

X
a dx

The vertical component of the EP-flux

F z=−Ou ' w '

Wave equations (1rst order)
 (no breaking, no mechanical or thermal

 dissipation no thermal forcing).

∂tu ∂x u 'uzw '=−∂x '

∂tu ∂x  ' z N 2 w'=0

∂
∂ x

u ' 1
0

∂
∂ z

0w '=0

N2= zz

H

zBV frequency:



  

3)Non orographic gravity wave sources and breaking
b)Wave-mean flow interactions

Vertical structure of a monochromatic wave
 (remember we can return to the full disturbance via Fourier transforms)

k>0 by convention

u 'w '
 ' =ℜ[ u z w  z 

 z e i kx− t ]ez /2H

−i  u u z w=−ik 

−i  z


2H  N 2 w=0

ik u w z−
w

2H =0

Intrinsic frequency: =−k u

Vertical structure equation: d 2 w
dz2  N 2 k 2

2 
k
 u zz

uz

H − 1
4H2 

Q z 

w=0

Remember, we want to evaluate  the vertical component of the Eliassen Palm Flux:

F z=−Ou ' w '=−
r

2
ℜ [u w ]



  

3)Non orographic gravity wave sources and breaking
b)Wave-mean flow interactions

Non-interarction theorem 

[−i
r

2 k
w z w

 ]
z1

z2

=i
r

2k∫z1

z2 [ w z w z
Q  z  w w  ]dz

Pure imaginary, real part 0

F z=−
r

2
ℜ [u w ]=ℜ[−i

r

2k
w z w

]

[F z ]z1

z2=0 For linear steady adiabatic non dissipative waves
 This the way Eliassen and Palm first derived it in 1961!

IP∫z1

z2 [d2 w
dz2 Q z  w=0x− ir

k
w ]dz



  

3)Non orographic gravity wave sources and breaking
c)Wave breaking parameterization

This is one manner to treat this problem, but the important
think in the following is to understand the central rôle that plays the non-interaction theorem

WKB Solution: the mean flow varies slowly in the vertical direction
 compared to the vertical wavelength of the waves. 

w z =W  ze
i∫0

z
m z ' dz '

We search for solutions of the form (assuming z=0 to be the level of the source):

Slowly varying means: ∣W z∣≪∣mW∣,∣m z∣≪m 2,ect....

d 2 w
dz2 Q  z  w=0

d 2W
dz2

2d order

2im dW
dz

i dm
dz

W


1rst order

 Q z −m2  zW
leadingorder

=0

Leading  Order: m  z =−sign   Q z  The minus sign ensure upward
propagation

First  Order: W= w 0 m0 
m z  w= w0m0

m z 
e
i∫0

z
m z '  dz '



  

3)Non orographic gravity wave sources and breaking
c)Wave breaking parameterization

If we inject the WKB solution into the EPF definition:

sign  F z =−sign  

The WKB approximation
 satisfies the non-interaction

 theorem!

F z=−
r

2
ℜ [u w ]=ℜ[−i

r

2k
w z w

]=r
m 0
2 k

w0 w 0 =cte

m(z) and m(0) always
 have the same sign

 otherwise        changes
sign: there is a critical level

 where the wave breaks



m  z =−sign   Q z  w= w0m0
m z 

e
i∫0

z
m z '  dz '

Example for U=cte, N2=cte:



  

3)Non orographic gravity wave sources and breaking
c)Wave breaking parameterization

sign  F z =−sign  m  z =−sign   Q z 

The sign chosen for m ensures
upward propagation

It impose the sign of the vertical
EP flux, with

Estward waves 
accelerate the flow 
when they breack

Westward waves
decelerates the flow when they

breack 

c= / k0

c= / k0



  

3)Non orographic gravity wave sources and breaking
c)Wave breaking parameterization

d  '
dz

0
Breaking!

∣ zz

H

z∣ez /2HN 2

When  using the polarization relations,
 this becomes:

∣w∣∣m∣e−z /2H=w s z 

In term of stress:

∣F z∣∣F z
S∣ where F z

S=
−r

2 k2 N
3e− z /2H

For a constant flow, we can also evaluate a breaking altitude:

Becomes in Hydrostatic-log pressure

When  using the WKB solution this translates

Zbr=2 H ln 2

N k∣w0∣
Breaking over more rapidly in the vertical for large amplitude and small intrinsic frequency!

No flux across critical levels!



  

3)Non orographic gravity wave sources and breaking
c)Wave breaking parameterization

Waves breaking parametrization

Wave breaking In term of stress:

∣F z∣∣F z
S∣ where F z

S=
−r

2 k2 N
3e− z /2H

0
∂ u
∂ t

 ....=∑i=1

N ∂ F i
z

∂ z
We can put as many waves as one wants!

Model levels z

z+dz

1)By cleaver physival considerations, we impose
  at the source (z=0 here but any level works) 

F z0  , , k

2) Passage from z to z+dz

F z zdz =F z z 
if ∣F z zdz∣∣F z

S  zdz ∣

No breaking if

then :F z zdz =F z
S  zdz 



  

3)Non orographic gravity wave sources and breaking
Summary
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